
Henrique Madeira, João Durães,
João Castelhano, Catarina Duarte, and Miguel Castelo Branco

University of Coimbra, Portugal

68th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault
Tolerance, Búzios, Brazil, June 25‐28, 2015

University
of Coimbra

What’s going on inside your brain
when you (don’t) find a bug?

(and what we can do to improve software reliability?)

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 2

•  Software faults
◆  Residual bugs that escape testing and go to the deployed

component/product
◆  Simplification: focus on faults in the code; i.e., assume the

requirements and functional specification are correct

•  Research question: are software faults different one
from each other or most of them fall in a small set of
fault types?

(ODC classification and data field available was not fine grain
enough to answer the question)

Some years ago…
Fault models for software faults

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 3

Some years ago…
Fault models for software faults

Fault types

Faults

Fault types

Faults Top N of most
common software
fault types

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 4

The “Top-N” software faults
Fault types Perc. Observed

in field study ODC classes
Missing "If (cond) { statement(s) }" 9.96 % Algorithm
Missing function call 8.64 % Algorithm
Missing "AND EXPR" in expression used as branch condition 7.89 % Checking
Missing "if (cond)" surrounding statement(s) 4.32 % Checking
Missing small and localized part of the algorithm 3.19 % Algorithm
Missing variable assignment using an expression 3.00 % Assignment
Wrong logical expression used as branch condition 3.00 % Checking
Wrong value assigned to a value 2.44 % Assignment
Missing variable initialization 2.25 % Assignment
Missing variable assignment using a value 2.25 % Assignment
Wrong arithmetic expression used in parameter of function call 2.25 % Interface
Wrong variable used in parameter of function call 1.50 % Interface
Total faults coverage 50.69 %

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 5

Field data studies on SW faults and
SW fault models representativeness

For more details:

•  "Definition of Software Fault Emulation Operators: a Field Data Study", J.
Durães and H. Madeira, IEEE/IFIP International Conference on Dependable Systems
and Networks, Dependable Computing and Communications, DSN-DCC 2003, San
Francisco, CA, USA, June 22-25, 2003.

•  “Emulation of Software Faults: A Field Data Study and a Practical Approach”,
J. Durães and H. Madeira, IEEE Transactions on Software Engineering, Vol. 32, No.
11, November 2006.

•  "On Fault Representativeness of Software Fault Injection", R. Natella, D.
Cotroneo, J. Duraes, H. Madeira, IEEE Transactions on Software Engineering,
December 2011

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 6

What really is a software faults?

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 7

Simple experiment of SW fault injection
(similar to defect seeding)

We asked a group of 12
experienced programmers to
analyze simple code snippets.

The code has some bugs,
inserted according to the Top N.

We explained them first the the
algorithm and the pseudo code.

•  Each participant found only a fraction of the bugs.

•  All of them indicated some wrong bugs (false positives)

•  The results of the group cover all the bugs
Observations

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 8

Some questions

•  If SW bugs are such simple things, why do programmers so
often fail see them?

(even when we remove all the context that makes things complex)

•  Why do some people see a given bug while others don’t?

•  Why is the percentage of false positives so high?

•  What can we do to improve the chances of spotting more
bugs during program coding (and during testing)?

What’s going on inside your brain when you (don’t) find a bug?

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 9

Functional Magnetic Resonance
Imaging (fMRI)

Added features
•  Screen
•  Eye tracking
•  Joystick

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 10

Functional Magnetic Resonance
Imaging (fMRI)

•  fMRI uses the magnetic properties of blood to analyze brain
activity in specific areas.

•  Based on small changes in blood. Referred to as BOLD
(Blood Oxygen Level-Dependent) imaging.

•  Creates highly detailed 3D images of the brain in successive
instants (sampling 2 seconds)

•  Active areas of the brain in a given moment are detected by
filtering out the active voxels, when compared to a base
level activity.

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 11

Experiment protocol
•  Group of volunteers, divided in two groups: very experienced

programmers and experienced programmers
•  Three simple programs in C: quick sort, shell sort and matrix

multiplication
•  All programs contain a small number of realistic bugs, inserted

beforehand
•  The algorithm and the pseudo code is explained to each volunteer,

before the experiment.
•  Each volunteer analyzes the code inside the fRMI:

◆  Records the bugs he/she founds
◆  Corrections are allowed (i.e., clear a bug indication)
◆  The eye tracking is synchronized with the fRMI (same time scale)
◆  After the session inside the fRMI, the volunteer indicates the level of

confidence he/she has on the each bug identified

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 12

Current status

•  8 full experiments so far (we need some more)

•  The analysis of the data is very heavy and takes a long time.
Includes:

◆  Functional areas of the brain activated while the volunteer analyses
areas of interest (i.e., where the bugs are, where the false positives
were indicated, etc.)

◆  Particular attention to brain areas related to abstract knowledge
(cognitive), decision taking, association, short term memory, among
others.

◆  Patters from the eye tracking and correlation with the fRMI

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 13

Sample of fRMI image
Results from 8 volunteers; basic areas activated in ALL volunteers

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 14

Where are we looking at?

•  Activation of brain decision areas in code lines where a bug
was injected.

•  Brain activity when the volunteer found a real bug and when
indicated a false positive.

•  Impact of the code complexity where bug is inserted.

•  Impact of recursive code structures.

Preliminary results (at code inspection level) indicate a big
difference between highly experienced programmers and
experienced programmer ! correspondence to brain activity

Henrique Madeira IFIP 10.4, Búzios, Brazil, June 25-28, 2015 15

Some unique features of the
experiment

•  To the best of our knowledge, it’s the first time decisions
based on highly abstract concepts are analyzed using
fRMI.

•  Software code seems to be a good choice because we have
clear complexity metrics.

•  Results are being exploited in two directions: by
neuroscientist and by software engineering researchers.

•  Risky experiment… in the sense that we have no
guaranties to find something relevant.

