Session 3

Perspectives on Security as Empirical Science - Vern Paxson (UC-Berkley)

- Need Science = prediction + control via understanding/principles
 - Characterize/hypoth/predict/experiment/analyze/repeat
 - Disseminate/independently confirm \rightarrow All with rigor
- Want a science
 - Like math (axiomatic)
 - Like physical science (truth can be discovered)
 - Like war/crime fighting (win versus adversary)
 - Like engineering: (functionality v. cost/time/effort)
 - Like a social science (contextual truths/behaviors)
- Comments:
 - Techno Science: observe properties of man-made systems
 - Need integration of previously separate scientific explanations
- Therefore ⇒ Empirical Basis for Socio-Economic Perspectives

Perspectives on Security as Empirical Science

- Paxson

- Why Empirical Science?
 - Analogy: lessons learned from network communications
- USENET example
 - Plot was log linear through 1996
 - Two more data points didn't fit invariant hypothesis
 - Analysis determined "ABUSE" started
 - Actually rich data set but first assess validity of data input
 - A second example: scan activity found major increase in traffic
 - 2002 when the WORM era began
 - 2004-06 Cyber crime takes off

Perspectives on Security as Empirical Science

- Paxson

- Data Where is it Obtained?
 - Hard to anonymize data
 - Major ground truth issues
- Hard to Validate Data
 - Issues in replicating data
- Invariants & Time Scales
 - Rate of change (e.g. PhD 5yr cycle)
 - Rareness of data events
- Why Harder than Hard Science
 - Secure systems ⇒ events probability near zero ⇒ hard to measure
 - Comment: FT (e.g. fly-by-wire systems) have dealt with this issue
- Why Softer than Hard Science?
 - Criminal laziness: motivates to sustain cash flow, not strategic

Perspectives on Security as Empirical Science

- Paxson

- Why Softer than Hard Science?
 - Criminal laziness: motivates to sustain cash flow, not strategic
- Holistic Analysis
 - Phases of the value chain
 - Looked at different stages
 - Checked large set of spam to measure process & look at structured bottleneck
 - Found 3 "dirty" banks
 - Comments: discussion on is this computer science

Structure As an Aid to Good Science – Maxion

- "test of all knowledge is an experiment"
- Story Grammar
 - Characters/settings/begin/middle/end
- Discussion on method and grammars
 - Point is structure helps organize and communicate
- Apply approach to abstracts/papers/reviews/proposals
- Abstracts are informative/disruptive and should have elements:
 - Objectives/Methods/Results/Conclusions
 - Could facilitate automation
 - Enable scraping of websites and better correlation of interests to results
 - Be used by journals
 - Discussion on STRUCTURED v. WELL STRUCTURED

Structure As an Aid to Good Science – Maxion

- Structure in Papers
 - Poor structure
 - impedes comprehension ("no story")
 - Creates opportunities for errors in omission
- Hallmarks on Good Experiments
 - Valid/reliable/repeatable/reproducible/properly reported
- Parts of an Experimental paper
 - Comment: Should paper follow the structure of the abstract?
- Hierarchy/Levels of Evidence

Observations

- Opportunity to apply strategies and lessons learned from dependability initiatives
- Vulnerabilities exist whether they are intentional or accidental/natural
- A system perspective helps in structuring and understanding the problem.
 - First principle of dependability is fault avoidance, i.e. do not accept/encourage:
 - a poorly formulated problem
 - a poorly formulated architecture with many vulnerabilities

Observations

- Difficult to make progress in the science of security if standards used for certification are not influenced
- A customer will base acceptance and certification of a system on these standards
- System builders are motivated contractually to focus efforts in compliance
 - No extra credit for applying a new, and maybe even better, approach / process if the results/efficiencies are not part of the certification process
 - May even be considered a negative factor
 - Lack of knowledge/training of evaluators that would also require additional cost/time
 - Current program has a tight timeframe
 - Assigned staff/program management rotations
 - Budget/scheduling commitments that are restrictive