
WG10.4, Bristol 2015 1

From Analyzing System Failures,
to Investigating Crimes

Brian Randell
School of Computing Science

Newcastle University, UK

WG10.4, Bristol 2015
2

Our Current Theoretical Starting Point

• Occurrence Nets (ONs) are a forty-five year old mathematical formalism
for representing causality and concurrency information concerning a
single execution of a (in general asynchronous) system.

• ONs are directed acyclic graphs that portray the (alleged) past and
present, or the predicted, activity of a system, in terms of conditions (i.e.
states), transitions (i.e. events) and arrows (representing known or
alleged causality).

• (An ON can be viewed as a generalisation of a “sequential program
trace”.)

• They can be represented as diagrams – good for tutorials, and for
illustrating the basic ideas – but ONs are often represented algebraically,
hidden from their users inside powerful fully-automated computer tools.

• They are much used in the computer industry, e.g. inside model-
checking tools for validating system designs, and even for automatically
creating (“synthesizing”) VLSI chip designs.

WG10.4, Bristol 2015
3

Occurrence Nets
(a formal graphical notation)

c6c1

c2

c3

c4

c5

e1

e2

e4

e3

Extant StatePast State

EventState

An example of an Occurrence Net

Interaction

WG10.4, Bristol 2015
4

Occurrence Nets at Newcastle
Much work in ASL (Newcastle’s joint EE/CS Asynchronous Systems Laboratory), on
system design, validation and synthesis, uses ONs.

ASL’s most recent interactive tool is WORKCRAFT (an infrastructure for interpreted
graph models). See http://workcraft.org/

http://workcraft.org/

WG10.4, Bristol 2015
5

Structured Occurrence Nets

• A Structured Occurrence Net (SON) is a set of formally-related
Occurrence Nets (using several forms of relation and hence abstraction).

• These include behavioural abstraction and temporal abstraction.
• SONs, like ONs, are acyclic – and so respect standard causality rules.
• SONs, unlike ONs:

– enable the activities of different component systems to be readily
distinguished

– provide (through behavioural abstraction) a direct means of modelling
the activity of an evolving system, so that

– their structuring makes them suitable for much more complex systems
and situations than ordinary (“flat”) ONs.

• They are of potential relevance to the tasks of verifying and synthesising
(asynchronous, i.e. real) systems (of systems)

• But here I concentrate on the task of analyzing system failures, i.e. of
determining what fault(s) caused what failure(s) – using crimes as some
of the failure examples.

WG10.4, Bristol 2015
6

Multiple Systems

• Basic ONs are good for single (non-evolving) systems. (If you use a large
ON to show the activity of a set of interacting different systems, it will not be
clear which system is responsible for which activity.)

• But by delineating the ONs that relate to different systems, and using explicit
communication relations to represent their (synchronous or
asynchronous) interactions, we can construct a Communication
Structured Occurrence Net (C-SON) to simplify the modelling and analysis
of large systems of systems

WG10.4, Bristol 2015
7

Note – Such behavioural abstractions cannot be represented
in ordinary occurrence nets

(Simple) Examples of
Behavioural Abstraction

WG10.4, Bristol 2015
8

Failure Analysis

• Failure analysis can involve following links in ONs backwards
from a failure in order to identify causes, and then forwards to
identify further errors and hence further potential failures.

• Behaviour relations between ONs in a SON can similarly be
followed in each direction, to trace fault/error/failure chains
between an evolving system and the activities it performs.

• Other types of relations between ONs can also be involved in
such analysis.

• The identification of failures, errors and faults as such requires
additional information, e.g. obtained from system
specifications, or users’ complaints.

• Such identifications are in principle, and often in practice,
made by other (judgemental) systems, whose activities can
also be modelled by ONs.

WG10.4, Bristol 2015
9

The UNCOVER Project

• A three-year project, now into its second year, funded by
the Engineering and Physical Sciences Research Council
(EPSRC).

• The project involves research on extending the theoretical
foundations of SONs, on tool support for SONs, and on
potential application areas.

• The tool support is based on the WORKCRAFT
infrastructure for interpreted graph models.

• The prototype tool that has been developed in UNCOVER
is called SONcraft.

• One of UNCOVER’s chosen illustrative application areas is
crime/accident investigation support – the others are
system verification (of VLSI chip designs), and on-line
deadlock detection in networks.

WG10.4, Bristol 2015
10

UNCOVER’s SONCRAFT Tool

• Implemented (by Bowen Li) as a plug-in to WORKCRAFT
• So far it provides graphic support for editing and portraying :

– Occurrence Nets (ONs)
– Structured Occurrence Nets (SONs) incorporating behaviour relations
– Multiple communicating ONs
– (Basic) behavioural abstraction and temporal abstraction
– Basic support for multi-page diagrams

• It enables such ONs and SONs to be verified, with respect to the formal
rules of SON and ON validity, e.g.

– freedom from cycles, caused by arcs within ONs, and by communications or
behaviour relations between ONs

– the requirement for ON fragments to start and terminate in places, not events
– the fact that places must not have multiple incoming or outgoing arcs.

• And it allows ONs and SONs to be “simulated”, i.e. for a user to explore
a step at a time “what causes what”, in particular what errors have been
propagated from one or more identified faults.

• Some example SONcraft screenshots follow.

WG10.4, Bristol 2015
11

Verification of an ON

Shaded events and conditions are invalid,
ones with red borders are part of a cycle

WG10.4, Bristol 2015
12

Verification of a Communication SON

Events and conditions with red borders are part of a cycle involving
asynchronous communications links joining multiple ONs

WG10.4, Bristol 2015
13

Recording an Investigation

This SONCRAFT screenshot is interpreted as showing which
investigator acquired and recorded what information when about

a possible crime; it makes use of behavioural abstraction.

WG10.4, Bristol 2015
14

SON Simulation

Simulation models error
propagation – “reverse
simulation” can model
fault identification.

The figure shows part of a
SON representation of a
crime and Its
investigation.

Places with black tokens
are “active’ - i.e. ready to
contribute to an event.
One can click on a
chosen event that is
coloured (i.e. able to
proceed), to see the
results of a single
execution step.

WG10.4, Bristol 2015
15

A crime and its investigation (1)

WG10.4, Bristol 2015
16

A crime and its investigation (2)

WG10.4, Bristol 2015
17

Simulation Control
• Simulation can be performed forwards

or backwards, and repeatedly
reversed, while exploring
fault/error/failure chains.

• As a simulation proceeds a ‘trace’
record is made of what event(s)
occurred, and used to control the
simulator.

• Such traces can also loaded with
firing sequences produced by tools
such as the reachability analyzer.

• Traces can be used to explore
(forwards or backwards) through the
sequence of recorded events, and to
explore alternative choices of which
enabled event(s) to select.

• Or they can be run through
automatically, at a chosen speed.

WG10.4, Bristol 2015
18

Automated Error Tracking
• Each event can have a

Fault bit, to indicate
whether the user wishes to
regard the event as a faulty
one.

• If error tracing is turned on
then the fault status of each
event is flagged with a “1”
or a “0”, “1” indicating a
simulated fault.

• An error count is shown
below each condition, set
initially to “0

• During simulation, each
condition’s count shows the
number of faults that have
been passed before it was
reached.

WG10.4, Bristol 2015
19

Reachability Analysis

• The Reachability tool allows a user to check whether a given set of states
(conditions and/or channel places) can be reachable at the same time from a
model’s initial states.

• (It checks whether any two of the given states are causally linked, i.e. must
happen before the other.)

• If the given set of states is reachable (e.g. if crook A and crook B could have
been in Bristol Docks simultaneously) then a trace of the events that would lead
to this situation is passed to the simulation tool for playback or further analysis.

WG10.4, Bristol 2015
20

Concluding Remarks

• SONs help reduce the complexity of complicated activity records, and to
deal with evolving systems – and are we believe quite novel, and of wide
applicability.

• Our EPSRC-funded “UNCOVER” research project involves both further
theory development, and implementation of means of representing,
analyzing and exploiting fully-general SONs.

• SONCRAFT is to be extended:
– to deal with large (multi-sheet) diagrams,
– to link with data sources (e.g. phone records),
– to represent time (of event occurrences) and durations (of states), and
– to support the modelling of multiple alternative (assumed) scenarios,

associating probability estimates with these alternatives.
• We are discussing the potential of SONCRAFT as a front end to the

CLUE crime investigation software, in order to provide investigators with
new and enhanced analysis tools.

• SONs are involved in several other recently-submitted research project
proposals (to EPSRC and EU), on topics including synthetic biology,
cloud-based cybercrime, dynamic real-time system reconfiguration, risk
reduction in marine transport, and automated traffic control.

WG10.4, Bristol 2015
21

WG10.4, Bristol 2015
22

(Simple) Temporal Abstraction –
an arithmetic example

Note – The apparent simplicity of both behavioural and temporal abstraction
soon vanishes when one starts considering asynchronous systems!

WG10.4, Bristol 2015
23

Cuts,
Phases

and
Blocks

Phases are used for
behavioural abstraction,

blocks for temporal
abstraction

	From Analyzing System Failures,�to Investigating Crimes��
	Our Current Theoretical Starting Point
	Occurrence Nets�(a formal graphical notation)�
	Occurrence Nets at Newcastle
	Structured Occurrence Nets
	Multiple Systems
	Slide Number 7
	Failure Analysis �
	The UNCOVER Project
	UNCOVER’s SONCRAFT Tool
	Verification of an ON
	Verification of a Communication SON
	Recording an Investigation
	SON Simulation�
	A crime and its investigation (1)
	A crime and its investigation (2)
	Simulation Control
	Automated Error Tracking
	Reachability Analysis
	Concluding Remarks
	Slide Number 21
	Slide Number 22
	Cuts, �Phases �and �Blocks

