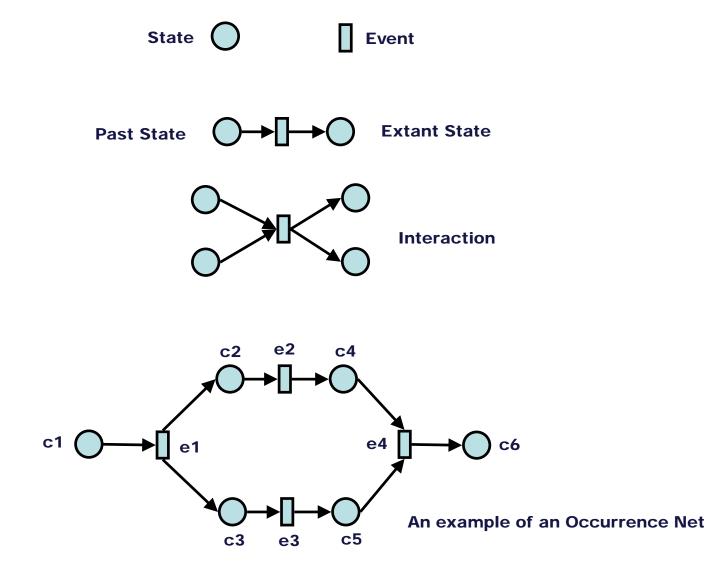


1

From Analyzing System Failures, to Investigating Crimes

Brian Randell School of Computing Science Newcastle University, UK

WG10.4, Bristol 2015


Our Current Theoretical Starting Point

- Occurrence Nets (ONs) are a forty-five year old mathematical formalism for representing <u>causality</u> and <u>concurrency</u> information concerning a single execution of a (in general asynchronous) system.
- ONs are directed acyclic graphs that portray the (alleged) past and present, or the predicted, activity of a system, in terms of conditions (i.e. states), transitions (i.e. events) and arrows (representing known or alleged causality).
- (An ON can be viewed as a generalisation of a "sequential program trace".)
- They can be represented as diagrams good for tutorials, and for illustrating the basic ideas but ONs are often represented algebraically, hidden from their users *inside* powerful fully-automated computer tools.
- They are much used in the computer industry, e.g. inside modelchecking tools for validating system designs, and even for automatically creating ("synthesizing") VLSI chip designs.

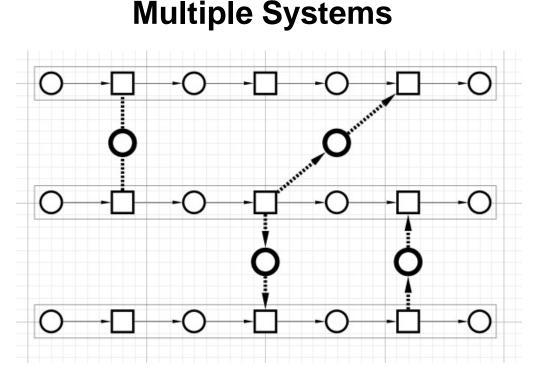
Occurrence Nets



Occurrence Nets at Newcastle

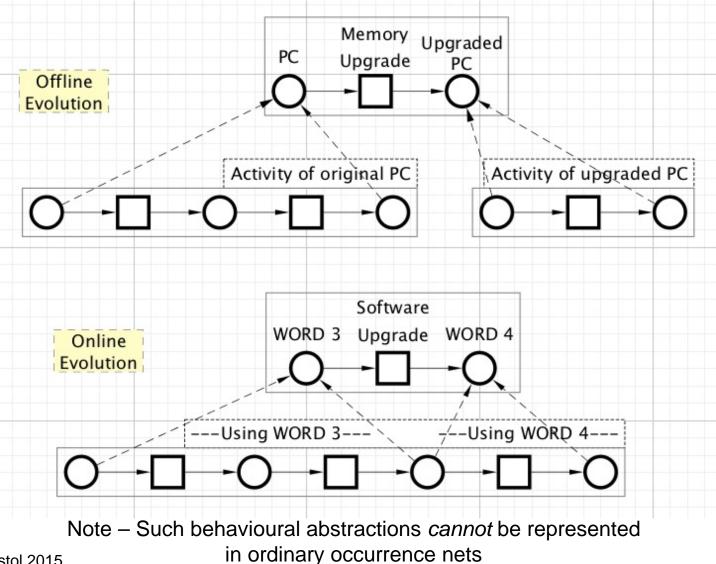
Much work in ASL (Newcastle's joint EE/CS Asynchronous Systems Laboratory), on system design, validation and synthesis, uses ONs.

ASL's most recent interactive tool is WORKCRAFT (an infrastructure for interpreted graph models). See http://workcraft.org/



Structured Occurrence Nets

- A **Structured Occurrence Net** (SON) is a set of <u>formally-related</u> Occurrence Nets (using several forms of relation and hence abstraction).
- These include **behavioural abstraction** and **temporal abstraction**.
- SONs, like ONs, are acyclic and so respect standard causality rules.
- SONs, unlike ONs:
 - enable the activities of different component systems to be readily distinguished
 - provide (through behavioural abstraction) a direct means of modelling the activity of an <u>evolving</u> system, so that
 - their structuring makes them suitable for much more complex systems and situations than ordinary ("flat") ONs.
- They are of potential relevance to the tasks of verifying and synthesising (asynchronous, i.e. real) systems (of systems)
- But here I concentrate on the task of analyzing system failures, i.e. of determining what fault(s) caused what failure(s) – using crimes as some of the failure examples.



- Basic ONs are good for <u>single</u> (non-evolving) systems. (If you use a large ON to show the activity of a set of interacting different systems, it will not be clear which system is responsible for which activity.)
- But by delineating the ONs that relate to different systems, and using explicit communication relations to represent their (synchronous or asynchronous) interactions, we can construct a Communication
 Structured Occurrence Net (C-SON) to simplify the modelling and analysis of large systems of systems

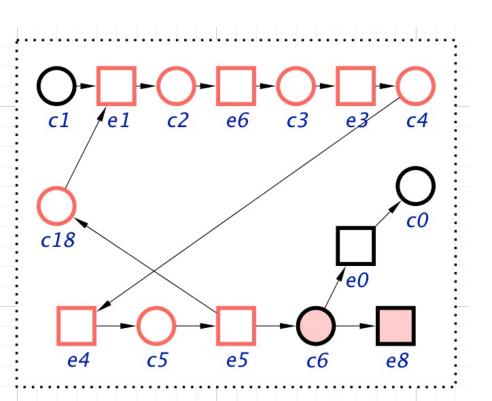
(Simple) Examples of Behavioural Abstraction

Failure Analysis

- Failure analysis can involve following links in ONs *backwards* from a failure in order to identify causes, and then *forwards* to identify further errors and hence further potential failures.
- Behaviour relations between ONs in a SON can similarly be followed in each direction, to trace fault/error/failure chains between an evolving system and the activities it performs.
- Other types of relations between ONs can also be involved in such analysis.
- The identification of failures, errors and faults as such requires additional information, e.g. obtained from system specifications, or users' complaints.
- Such identifications are in principle, and often in practice, made by other (judgemental) systems, whose activities can also be modelled by ONs.

The UNCOVER Project

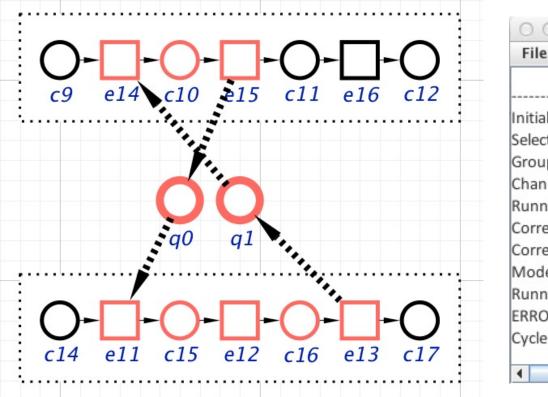
- A three-year project, now into its second year, funded by the Engineering and Physical Sciences Research Council (EPSRC).
- The project involves research on extending the theoretical foundations of SONs, on tool support for SONs, and on potential application areas.
- The tool support is based on the WORKCRAFT infrastructure for interpreted graph models.
- The prototype tool that has been developed in UNCOVER is called **SONcraft**.
- One of UNCOVER's chosen illustrative application areas is crime/accident investigation support – the others are system verification (of VLSI chip designs), and on-line deadlock detection in networks.



UNCOVER's SONCRAFT Tool

- Implemented (by Bowen Li) as a plug-in to WORKCRAFT
- So far it provides graphic support for editing and portraying :
 - Occurrence Nets (ONs)
 - Structured Occurrence Nets (SONs) incorporating behaviour relations
 - Multiple communicating ONs
 - (Basic) behavioural abstraction and temporal abstraction
 - Basic support for multi-page diagrams
- It enables such ONs and SONs to be verified, with respect to the formal rules of SON and ON validity, e.g.
 - freedom from cycles, caused by arcs within ONs, and by communications or behaviour relations between ONs
 - the requirement for ON fragments to start and terminate in places, not events
 - the fact that places must not have multiple incoming or outgoing arcs.
- And it allows ONs and SONs to be "simulated", i.e. for a user to explore a step at a time "what causes what", in particular what errors have been propagated from one or more identified faults.
- Some example SONcraft screenshots follow.

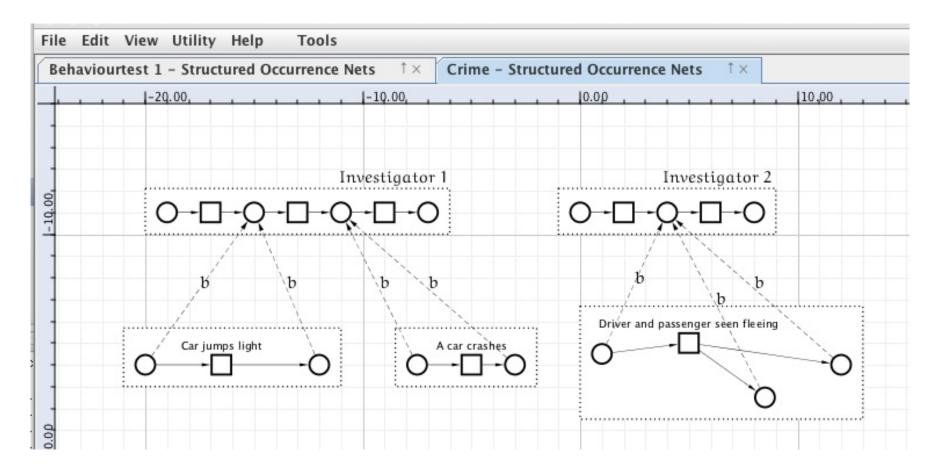
Verification of an ON



Shaded events and conditions are invalid, ones with red borders are part of a cycle

File	Verification Result	
	Occurrence Net Verification	
Selected Groups =	-1	
Group Componen	ts = 15	
Initialising group o	components	
Group label : emp	ty	
Condition(s) = 8		
Event(s) = 7.		
Running compone	ents relation task	
Initial states corre	ct.	
ERROR : Incorrect	final state: e8()	
ERROR : Post set e	events in conflict: c6()	
Components relat	tion task complete.	
Running cycle det	ection	
	cycles = 1, Backward cycles = 1.	
Cycle detection co		
-,		-
4		

Verification of a Communication SON

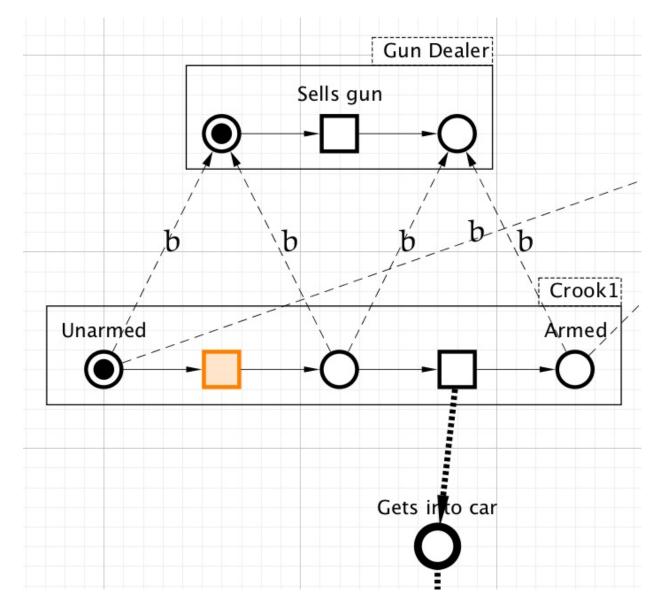


000	Verifica	tion Result		
File				
		5115-51-676 B	2 BC	-
(Communicatio	on-SON Verifi	cation	
Initialising selec	ted groups co	omponents		
Selected Group	s = 2			
Group Compor	ients = 14			
Channel Place(s	5) = 2			
Running model	structure and	d component	s relation cheo	:k
Correct channe	l place relatio	n.		=
Correct commu	inication strue	cuture.		
Model strucutu	ire and compo	onents relatio	on task comple	ete.
Running cycle o	letection			
ERROR : global	cycles = 2.			
Cycle detection				
				-
•				

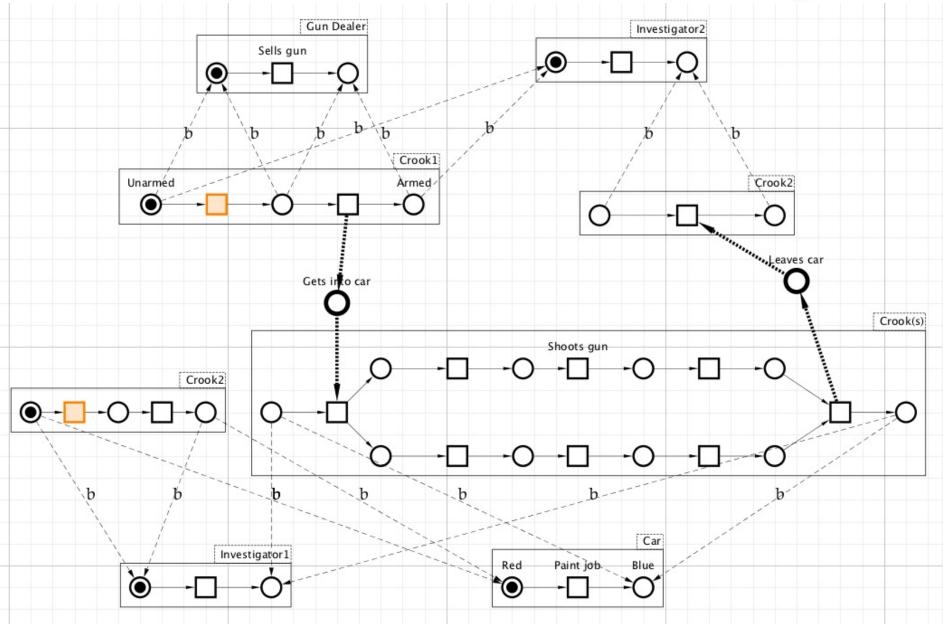
Events and conditions with red borders are part of a cycle involving asynchronous communications links joining multiple ONs

Recording an Investigation

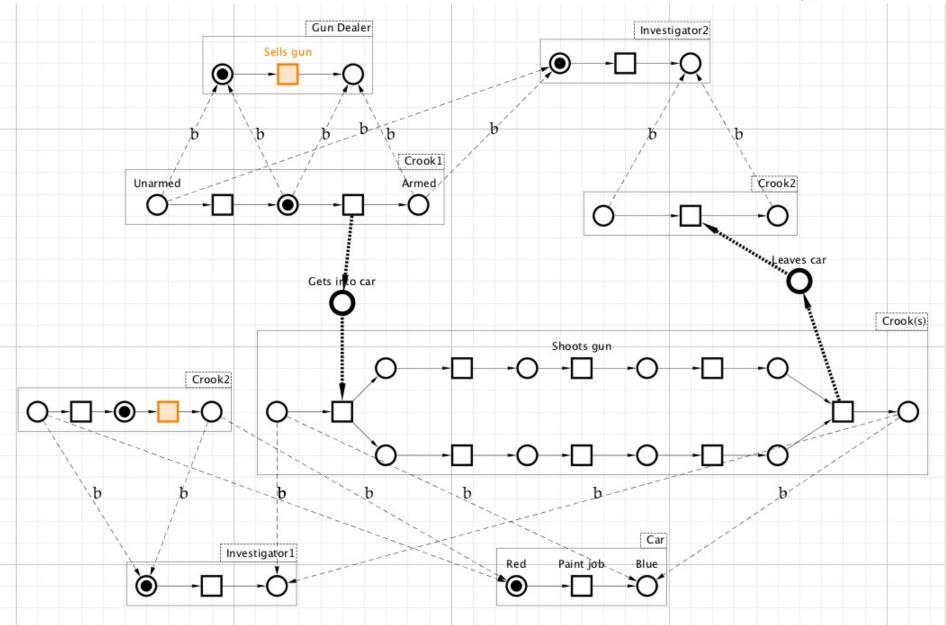
This SONCRAFT screenshot is interpreted as showing which investigator acquired and recorded what information when about a possible crime; it makes use of <u>behavioural abstraction</u>.


SON Simulation

Simulation models error propagation – "reverse simulation" can model fault identification.


The figure shows part of a SON representation of a crime and Its investigation.

Places with black tokens are "active' - i.e. ready to contribute to an event. One can click on a chosen event that is coloured (i.e. able to proceed), to see the results of a single execution step.


A crime and its investigation (1)

A crime and its investigation (2)

Simulation Control

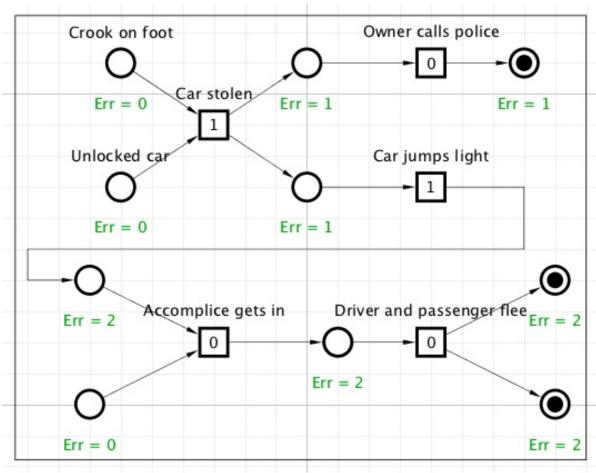
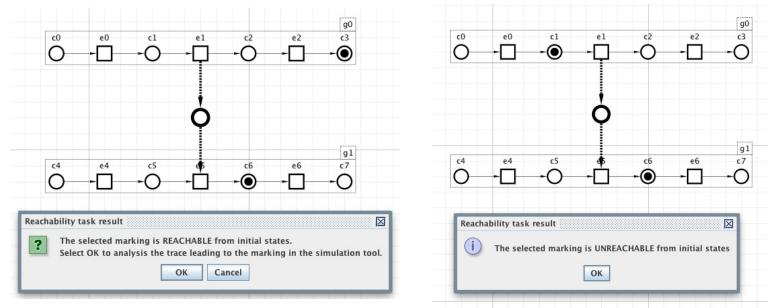

- Simulation can be performed forwards or backwards, and repeatedly reversed, while exploring fault/error/failure chains.
- As a simulation proceeds a 'trace' record is made of what event(s) occurred, and used to control the simulator.
- Such traces can also loaded with firing sequences produced by tools such as the reachability analyzer.
- Traces can be used to explore (forwards or backwards) through the sequence of recorded events, and to explore alternative choices of which enabled event(s) to select.
- Or they can be run through automatically, at a chosen speed.

Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system	Tool controls	X					
Trace Branch > g0/e0 - > g4/e5, g1/e2 - > g6/e15, g0/e1, g7/e16 > g0/e1 > g5/e7 > g7/e16, g6/e15 > g5/e9, g5/e8 > g5/e7, g3/e3 > g5/e12, g3/e3, g5/e10 > g5/e9 > g5/e13, g2/e4, g5/e11 > g5/e8 > g5/e14 > g5/e12 > g5/e10 > g5/e12 > g5/e13, g2/e4, g5/e11 > g5/e12 > g5/e14 > g5/e12 > g5/e13, g2/e4, g5/e11 > g5/e12		>>> 💦 Autc					
Trace Branch > g0/e0 - > g4/e5, g1/e2 - > g6/e15, g0/e1, g7/e16 > g0/e1 > g5/e7 > g7/e16, g6/e15 > g5/e9, g5/e8 > g5/e7, g3/e3 > g5/e12, g3/e3, g5/e10 > g5/e9 > g5/e13, g2/e4, g5/e11 > g5/e8 > g5/e14 > g5/e12 > g5/e10 > g5/e12 > g5/e13, g2/e4, g5/e11 > g5/e12 > g5/e14 > g5/e12 > g5/e13, g2/e4, g5/e11 > g5/e12							
> g0/e0 > g4/e5, g1/e2 > g4/e6 > g6/e15, g0/e1, g7/e16 > g5/e7 > g5/e7 > g5/e9, g5/e8 > g5/e12, g3/e3, g5/e10 > g5/e13, g2/e4, g5/e11 > g5/e12 > g5/e14 > g5/e12 > g5/e12 > g5/e12 > g5/e14 > g5/e12 > g5/e13 > g5/e12 > g5/e13 > g5/e11							
> g4/e5, g1/e2 > g4/e6 > g6/e15, g0/e1, g7/e16 > g5/e7 > g5/e7, g3/e3 > g5/e9, g5/e8 > g5/e12, g3/e3, g5/e10 > g5/e13, g2/e4, g5/e11 > g5/e12 > g5/e14 > g5/e10 > g5/e13, g2/e4, g5/e11	Trace	Branch					
> g4/e6 > g6/e15, g0/e1, g7/e16 > g5/e7 > g5/e7 > g5/e9, g5/e8 > g5/e12, g3/e3, g5/e10 > g5/e13, g2/e4, g5/e11 > g5/e12 > g5/e14 > g5/e12 > g5/e12 > g5/e14 > g5/e12 > g5/e12 > g5/e12 > g5/e14 > g5/e12 > g5/e13 > g5/e12 > g5/e13 > g5/e11							
<pre>> g6/e15, g0/e1, g7/e16 > g0/e1 > g5/e7 > g7/e16, g6/e15 > g5/e9, g5/e8 > g5/e7, g3/e3 > g5/e12, g3/e3, g5/e10 > g5/e9 > g5/e13, g2/e4, g5/e11 > g5/e8 > g5/e14 > g5/e12 > g5/e10 > g5/e13, g2/e4, g5/e11</pre>							
> g5/e7 > g7/e16, g6/e15 > g5/e9, g5/e8 > g5/e7, g3/e3 > g5/e12, g3/e3, g5/e10 > g5/e9 > g5/e13, g2/e4, g5/e11 > g5/e8 > g5/e14 > g5/e12 > g5/e10 > g5/e13, g2/e4, g5/e11		· · · · · · · · · · · · · · · · · · ·					
> g5/e9, g5/e8 > g5/e7, g3/e3 > g5/e12, g3/e3, g5/e10 > g5/e9 > g5/e13, g2/e4, g5/e11 > g5/e8 > g5/e14 > g5/e12 > g5/e10 > g5/e13, g2/e4, g5/e11							
<pre>> g5/e12, g3/e3, g5/e10 > g5/e9 > g5/e13, g2/e4, g5/e11 > g5/e8 > g5/e14 > g5/e12 > g5/e10 > g5/e13, g2/e4, g5/e11</pre>							
> g5/e13, g2/e4, g5/e11 > g5/e8 > g5/e14 > g5/e12 > g5/e10 > g5/e13, g2/e4, g5/e11							
> g5/e14 > g5/e12 > g5/e10 > g5/e13, g2/e4, g5/e11							
> g5/e10 > g5/e13, g2/e4, g5/e11							
> g5/e13, g2/e4, g5/e11	> g5/e14						
> g5/e14							
		> g5/e14					

Automated Error Tracking

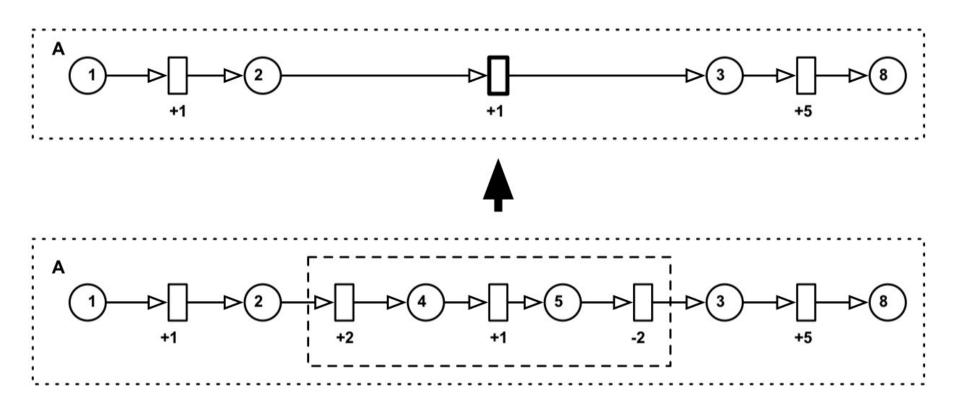


- Each event can have a Fault bit, to indicate whether the user wishes to regard the event as a faulty one.
- If *error tracing* is turned on then the fault status of each event is flagged with a "1" or a "0", "1" indicating a simulated fault.
- An error count is shown below each condition, set initially to "0
- During simulation, each condition's count shows the number of faults that have been passed before it was reached.

Reachability Analysis

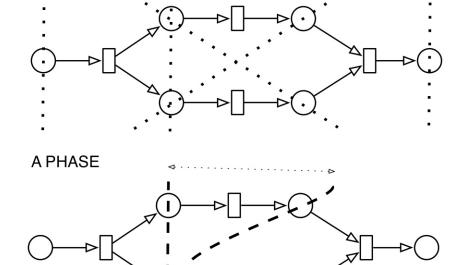
- The Reachability tool allows a user to check whether a given set of states (conditions and/or channel places) can be reachable at the same time from a model's initial states.
- (It checks whether any two of the given states are causally linked, i.e. must happen before the other.)
- If the given set of states is reachable (e.g. if crook A and crook B could have been in Bristol Docks simultaneously) then a trace of the events that would lead to this situation is passed to the simulation tool for playback or further analysis.

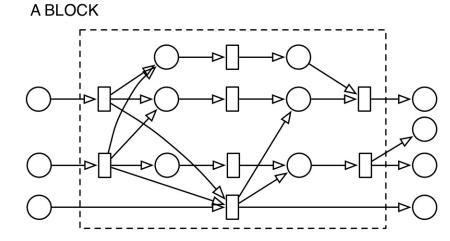
Concluding Remarks



- SONs help reduce the complexity of complicated activity records, and to deal with evolving systems – and are we believe quite novel, and of wide applicability.
- Our EPSRC-funded "UNCOVER" research project involves both further theory development, and implementation of means of representing, analyzing and exploiting fully-general SONs.
- SONCRAFT is to be extended:
 - to deal with large (multi-sheet) diagrams,
 - to link with data sources (e.g. phone records),
 - to represent time (of event occurrences) and durations (of states), and
 - to support the modelling of multiple alternative (assumed) scenarios, associating probability estimates with these alternatives.
- We are discussing the potential of SONCRAFT as a front end to the CLUE crime investigation software, in order to provide investigators with new and enhanced analysis tools.
- SONs are involved in several other recently-submitted research project proposals (to EPSRC and EU), on topics including synthetic biology, cloud-based cybercrime, dynamic real-time system reconfiguration, risk reduction in marine transport, and automated traffic control.

(Simple) Temporal Abstraction – an arithmetic example




Note – The apparent simplicity of both behavioural and temporal abstraction soon vanishes when one starts considering asynchronous systems!

Phases are used for behavioural abstraction, blocks for temporal abstraction

SOME CUTS