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Our Current Theoretical Starting Point

• Occurrence Nets (ONs) are a forty-five year old mathematical formalism 
for representing causality and concurrency information concerning a 
single execution of a (in general asynchronous) system.

• ONs  are directed acyclic graphs that portray the (alleged) past and 
present, or the predicted, activity of a system, in terms of conditions (i.e. 
states), transitions (i.e. events) and arrows (representing known or 
alleged causality). 

• (An ON can be viewed as a generalisation of a “sequential program 
trace”.)

• They can be represented as diagrams – good for tutorials, and for 
illustrating the basic ideas – but ONs are often represented algebraically, 
hidden from their users inside powerful fully-automated computer tools.

• They are much used in the computer industry, e.g. inside model-
checking tools for validating system designs, and even for automatically 
creating (“synthesizing”) VLSI chip designs. 
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Occurrence Nets
(a formal graphical notation)
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Occurrence Nets at Newcastle
Much work in ASL (Newcastle’s joint EE/CS Asynchronous Systems Laboratory), on 
system design, validation and synthesis, uses ONs.

ASL’s most recent interactive tool is WORKCRAFT (an infrastructure for interpreted 
graph models). See http://workcraft.org/

http://workcraft.org/
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Structured Occurrence Nets

• A Structured Occurrence Net (SON) is a set of formally-related
Occurrence Nets (using several forms of relation and hence abstraction).

• These include behavioural abstraction and  temporal abstraction.
• SONs, like ONs, are acyclic – and so respect standard causality rules.
• SONs, unlike ONs:

– enable the activities of different component systems to be readily 
distinguished

– provide (through behavioural abstraction) a direct means of modelling 
the activity of an evolving system, so that

– their structuring makes them suitable for much more complex systems 
and situations than ordinary (“flat”) ONs.

• They are of potential relevance to the tasks of verifying and synthesising 
(asynchronous, i.e. real) systems (of systems)

• But here I concentrate on the task of analyzing system failures, i.e. of 
determining what fault(s) caused what failure(s) – using crimes as some 
of the failure examples.
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Multiple Systems

• Basic ONs are good for single (non-evolving) systems. (If you use a large 
ON to show the activity of a set of interacting different systems, it will not be 
clear which system is responsible for which activity.)

• But by delineating the ONs that relate to different systems, and using explicit 
communication relations to represent their (synchronous or 
asynchronous) interactions, we can construct a Communication 
Structured Occurrence Net (C-SON) to simplify the modelling and analysis 
of large systems of systems
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Note – Such behavioural abstractions cannot be represented 
in ordinary occurrence nets  

(Simple) Examples of 
Behavioural Abstraction
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Failure Analysis 

• Failure analysis can involve following links in ONs backwards
from a failure in order to identify causes, and then forwards to 
identify further errors and hence further potential failures.

• Behaviour relations between ONs in a SON can similarly be 
followed in each direction, to trace fault/error/failure chains 
between an evolving system and the activities it performs.

• Other types of relations between ONs can also be involved in 
such analysis.

• The identification of failures, errors and faults as such requires 
additional information, e.g. obtained from system 
specifications, or users’ complaints.

• Such identifications are in principle, and often in practice, 
made by other (judgemental) systems, whose activities can 
also be modelled by ONs.
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The UNCOVER Project

• A three-year project, now into its second year, funded by 
the Engineering and Physical Sciences Research Council 
(EPSRC).

• The project involves research on extending the theoretical 
foundations of SONs, on tool support for SONs, and on 
potential application areas.

• The tool support is based on the WORKCRAFT 
infrastructure for interpreted graph models.

• The prototype tool that has been developed in UNCOVER 
is called SONcraft.

• One of UNCOVER’s chosen illustrative application areas is 
crime/accident investigation support – the others are 
system verification (of VLSI chip designs), and on-line 
deadlock detection in networks.
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UNCOVER’s SONCRAFT Tool

• Implemented (by Bowen Li) as a plug-in to WORKCRAFT
• So far it provides graphic support for editing and portraying :

– Occurrence Nets (ONs)
– Structured Occurrence Nets (SONs) incorporating behaviour relations
– Multiple communicating ONs
– (Basic) behavioural abstraction and temporal abstraction
– Basic support for multi-page diagrams

• It enables such ONs and SONs to be verified, with respect to the formal 
rules of SON and ON validity, e.g. 

– freedom from cycles, caused by arcs within ONs, and by communications or 
behaviour relations between ONs

– the requirement for ON fragments to start and terminate in places, not events
– the fact that places must not have multiple incoming or outgoing arcs.

• And it allows ONs and SONs to be “simulated”, i.e. for a user to explore 
a step at a time “what causes what”, in particular what errors have been 
propagated from one or more identified faults.

• Some example SONcraft screenshots follow.
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Verification of an ON

Shaded events and conditions are invalid, 
ones with red borders are part of a cycle
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Verification of a Communication SON

Events and conditions with red borders are part of a cycle involving 
asynchronous communications links joining multiple ONs
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Recording an Investigation

This SONCRAFT screenshot is interpreted as showing which 
investigator acquired and recorded what information when about 

a possible crime; it makes use of behavioural abstraction.
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SON Simulation

Simulation models error 
propagation – “reverse 
simulation” can model 
fault identification.

The figure shows part of a 
SON representation of a 
crime and Its 
investigation. 

Places with black tokens 
are “active’ - i.e. ready to 
contribute to an event. 
One can click on a 
chosen event that is 
coloured (i.e. able to 
proceed), to see the 
results of a single 
execution step.
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A crime and its investigation (1)
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A crime and its investigation (2)
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Simulation Control
• Simulation can be performed forwards 

or backwards, and repeatedly 
reversed, while exploring 
fault/error/failure chains.

• As a simulation proceeds a ‘trace’
record is made of what event(s) 
occurred, and used to control the 
simulator.

• Such traces can also loaded with 
firing sequences produced by tools 
such as the reachability analyzer.

• Traces can be used to explore 
(forwards or backwards) through the 
sequence of recorded events, and to 
explore alternative choices of which 
enabled event(s) to select.

• Or they can be run through 
automatically, at a chosen speed.
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Automated Error Tracking
• Each event can have a 

Fault bit, to indicate 
whether the user wishes to 
regard the event as a faulty 
one. 

• If error tracing is turned on 
then the fault status of each 
event is flagged with a “1”
or a “0”, “1” indicating a 
simulated fault. 

• An error count is shown 
below each condition, set 
initially to “0 

• During simulation, each 
condition’s count shows the 
number of faults that have 
been passed before it was 
reached. 
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Reachability Analysis

• The Reachability tool allows a user to check whether a given set of states 
(conditions and/or channel places) can be reachable at the same time from a 
model’s initial states.

• (It checks whether any two of the given states are causally linked, i.e. must 
happen before the other.)

• If the given set of states is reachable (e.g. if crook A and crook B could have 
been in Bristol Docks simultaneously) then a trace of the events that would lead 
to this situation is passed to the simulation tool for playback or further analysis.
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Concluding Remarks

• SONs help reduce the complexity of complicated activity records, and to 
deal with evolving systems – and are we believe quite novel, and of wide 
applicability.

• Our EPSRC-funded “UNCOVER” research project involves both further 
theory development, and implementation of means of representing, 
analyzing and exploiting fully-general SONs.

• SONCRAFT is to be extended: 
– to deal with large (multi-sheet) diagrams, 
– to link with data sources (e.g. phone records), 
– to represent time (of event occurrences) and durations (of states), and 
– to support the modelling of multiple alternative (assumed) scenarios, 

associating probability estimates with these alternatives.
• We are discussing the potential of SONCRAFT as a front end to the 

CLUE crime investigation software, in order to provide investigators with  
new and enhanced analysis tools.

• SONs are involved in several other recently-submitted research project 
proposals (to EPSRC and EU), on topics including synthetic biology, 
cloud-based cybercrime, dynamic real-time system reconfiguration, risk 
reduction in marine transport, and automated traffic control.
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(Simple) Temporal Abstraction –
an arithmetic example

Note – The apparent simplicity of both behavioural and temporal abstraction 
soon vanishes when one starts considering asynchronous systems!
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Cuts, 
Phases 

and 
Blocks

Phases are used for 
behavioural abstraction, 

blocks for temporal 
abstraction
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