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PaaS Clouds



Motivation

Number of critical applications in the Cloud is 
increasing

Number of Intrusions in these applications is 
increasing



Motivation

Intrusions compromise:
• Integrity
• Availability
• Confidentiality

Intrusion/fault causes:
• Software flaws
• Configuration and usage mistakes
• Corrupted legitimate requests (e.g. SQL injection)



Motivation

• Personal motivation:
• I’ve been working on masking faults and intrusions 

for 15 years
• Industry seems not to care
• Industry does care about recovering from 

intrusions/faults when they happen



Goal

Recover the application’s integrity
when intrusions happen 



Related Work

Backups
works but removes both bad and good actions
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Related Work

Intrusion recovery: remove bad, not good actions
• Operating systems: Taser, Retro
• Databases: ITDB, Phoenix
• Web applications: Goel et. al, Warp, Aire
• Others: Undo for Operators

Limitations:
• All require setup and configuration
• Max. complexity: 1 app server,1 database instance
• Cause application downtime during recovery



Objective

Platform as a Service (PaaS)
• Cloud service = to run applications
• Consumer develops application to run in that 

environment, using
– Supported languages, e.g., Java, Python, Go, PHP
– Supported components, e.g., SQL/noSQL databases, 

load balancers



Objective

Intrusion recovery system for PaaS
• Supported by the PaaS: available without setup
• Remove the intrusion effects
• Support applications deployed in various instances
• Avoid application downtime
• Cost effective
• Recover fast



Architecture

Shuttle



Architecture

Replay Process
1. Identify the malicious actions
2. Start new application and database instances
3. Load a snapshot previous to intrusion instant

Create a new branch

4. Replay requests
Database operations shall replay in same order as original

5. Block incoming requests; replay last requests
6. Change branch



Replay Modes

Full-Replay Selective-Replay

1 Cluster (Serial) ✔ ✔
Clustered ✔ ✗

Full-Replay: Replay every operation after snapshot
Selective-Replay: Replay only affected (tainted) operations

Serial: Replay all dependency graph sequentially
Clustered: Independent clusters can be replayed concurrently



Evaluation

Environment
• Amazon EC2, c3.xlarge instances, Gb Ethernet
• WildFly (formely JBoss) application servers
• Voldemort database 
• Ask Q&A application; data from Stack Exchange



Evaluation

Accuracy with intrusion scenarios:
1. Malicious requests
2. Software vulnerabilities
3. External channels (e.g. SSH)

#tampered
intrusion

#tainted #replayed
(selective rep.)

#replayed 
(full replay)

1a 110 0 [0, 605] > 38 620
1b 58 14 [0, 379] > 38 620

1c 48 52 [0, 253] > 38 620
2a 4 338 0 - > 38 620
2b 18 286 1 278 - > 38 620

3 > 2 000 - - > 38 620



Evaluation

Performance overhead
in normal execution



Evaluation Performance

Recovery time
1 million requests



Evaluation Performance

Restrain duration

Begin
restrain

Restrain: 46 seconds



Evaluation Performance

Storage overhead
for 1 million requests



Conclusion

• New intrusion recovery service to be integrated in 
PaaS offerings

• Supports applications running in various instances 
backed by distributed databases

• Leverages the resource elasticity and pay-per-use 
model to reduce the recovery time and costs
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