
Miguel P. Correia
(joint work with Dário Nascimento)

IFIP WG Meeting
Jan. 2015

Recovery from Intrusions in 
PaaS Clouds



Motivation

Number of critical applications in the Cloud is 
increasing

Number of Intrusions in these applications is 
increasing



Motivation

Intrusions compromise:
• Integrity
• Availability
• Confidentiality

Intrusion/fault causes:
• Software flaws
• Configuration and usage mistakes
• Corrupted legitimate requests (e.g. SQL injection)



Motivation

• Personal motivation:
• I’ve been working on masking faults and intrusions 

for 15 years
• Industry seems not to care
• Industry does care about recovering from 

intrusions/faults when they happen



Goal

Recover the application’s integrity
when intrusions happen 



Related Work

Backups
works but removes both bad and good actions

t

Backup A Backup B

User Action
Malicious

Action



Related Work

Intrusion recovery: remove bad, not good actions
• Operating systems: Taser, Retro
• Databases: ITDB, Phoenix
• Web applications: Goel et. al, Warp, Aire
• Others: Undo for Operators

Limitations:
• All require setup and configuration
• Max. complexity: 1 app server,1 database instance
• Cause application downtime during recovery



Objective

Platform as a Service (PaaS)
• Cloud service = to run applications
• Consumer develops application to run in that 

environment, using
– Supported languages, e.g., Java, Python, Go, PHP
– Supported components, e.g., SQL/noSQL databases, 

load balancers



Objective

Intrusion recovery system for PaaS
• Supported by the PaaS: available without setup
• Remove the intrusion effects
• Support applications deployed in various instances
• Avoid application downtime
• Cost effective
• Recover fast



Architecture

Shuttle



Architecture

Replay Process
1. Identify the malicious actions
2. Start new application and database instances
3. Load a snapshot previous to intrusion instant

Create a new branch

4. Replay requests
Database operations shall replay in same order as original

5. Block incoming requests; replay last requests
6. Change branch



Replay Modes

Full-Replay Selective-Replay

1 Cluster (Serial) ✔ ✔
Clustered ✔ ✗

Full-Replay: Replay every operation after snapshot
Selective-Replay: Replay only affected (tainted) operations

Serial: Replay all dependency graph sequentially
Clustered: Independent clusters can be replayed concurrently



Evaluation

Environment
• Amazon EC2, c3.xlarge instances, Gb Ethernet
• WildFly (formely JBoss) application servers
• Voldemort database 
• Ask Q&A application; data from Stack Exchange



Evaluation

Accuracy with intrusion scenarios:
1. Malicious requests
2. Software vulnerabilities
3. External channels (e.g. SSH)

#tampered
intrusion

#tainted #replayed
(selective rep.)

#replayed 
(full replay)

1a 110 0 [0, 605] > 38 620
1b 58 14 [0, 379] > 38 620

1c 48 52 [0, 253] > 38 620
2a 4 338 0 - > 38 620
2b 18 286 1 278 - > 38 620

3 > 2 000 - - > 38 620



Evaluation

Performance overhead
in normal execution



Evaluation Performance

Recovery time
1 million requests



Evaluation Performance

Restrain duration

Begin
restrain

Restrain: 46 seconds



Evaluation Performance

Storage overhead
for 1 million requests



Conclusion

• New intrusion recovery service to be integrated in 
PaaS offerings

• Supports applications running in various instances 
backed by distributed databases

• Leverages the resource elasticity and pay-per-use 
model to reduce the recovery time and costs


	Slide Number 1
	Motivation
	Motivation
	Motivation
	Goal
	Related Work
	Related Work
	Objective
	Objective
	Architecture
	Architecture
	Replay Modes
	Evaluation
	Evaluation
	Evaluation
	Evaluation Performance
	Evaluation Performance
	Evaluation Performance
	Conclusion

