Stochastic Modelling of Cyber Attacks in Industrial Control Systems

Dr Peter Popov

In collaboration with Robin Bloomfield, Aleksandr Netkachov and Kizito Salako

Centre for Software Reliability

City University London

p.t.popov@city.ac.uk

College Building, City University London
Northampton Square, EC1V 0HB
Tel: +44 207 040 8963 (direct)
+44 207 040 8420 (sec. CSR)
Talk outline

• Risk analysis of complex industrial systems
 – Complexity makes the analysis very difficult
 • Identifying hazards and all “interesting events” is very difficult
 – Stochastic models are a way of addressing this difficulty
• Preliminary Interdependency Analysis
 – Method, Modelling dependencies, Parameterisation
• Tool support
• Modelling complex industrial control systems
 – NORDIC32 + a model of protection and control based on IEC 61850
 – Model of an Adversary
 – Simulation engine
 – Results
• Conclusions and Future work
Projects relevant to work

Sponsored by:

- EU: AFTER (2011-2014) (A Framework for electrical power systems vulnerability identification, defence and restoration)

A new grant has just been announced:

Based on:

Critical Infrastructure Interdependencies

- A key issue for achieving CI resilience and CI protection
 - risk of CI disturbances propagating across dependencies’ links
- A complex phenomena, yet not well understood

Geographical dependencies
Infrastructures affected due to proximity of explosion site

- Transport: smoke affected visibility at Heathrow, M1 closed for two days
- Energy: explosion destroyed adjacent business park incl. 92 companies (damages over £70m)
- Information infrastructure: headquarters of IT company destroyed by blast, with multiple cascading effects

Information infrastructure dependencies
Cascading effects of the damage sustained by Northgate Information Solutions

- Health: five hospitals lost access to patient records and admission/discharge systems and reverted to manual systems for a week
- Finance: £1.4 billion payroll scheme lost due to explosion — recovered in time
PIA - Interdependency Analysis

• PIA is an approach (method) to interdependency analysis which consists of two steps
 – Preliminary Interdependency Analysis (Pre-IA) – HAZOP like analysis of interdependency **discovery**
 – Probabilistic Interdependency Analysis (Pro-IA) – **quantitative model** of interacting CIs, each represented as a collection of services, which in turn may have their own network and components:
 • Typically very large number of components (**hardly amenable to analytic solutions**),
 – parameterization becomes problematic
 • Probabilistic behaviour (rates/distributions of Time-To-Failure and Time-To-Repair)
 • Engineering (typically deterministic) models (e.g. various flows models) are needed for high fidelity studies.
An overview of the PIA method

Scope and boundaries

Threat models

Incident data

Qualitative PIA

- Setting system boundaries
- Service definition (inputs, output external resources)
- Identification of service parts (components, assets, internal resources)
- Identification of dependencies between services and their parts

Quantitative PIA

- Definition of state-machines (states and transitions)
- Parameterisation of stochastic associations
- (optional) Adding and configuring plug-ins
- Deploying model on the execution engine
- Interdependency study via simulation

PIA Visual Designer
Model development based on the ASCE tool

Deployment

Execution Engine
A Möbius compatible simulation environment

Run-time Model Description
- A complete Möbius project
- A set of text files
- Utilities, plug-ins
Preliminary Interdependency Analysis (Pre-IA)

- ‘Preliminary’ because one should start by establishing **basic understanding**
- Service oriented, systematic elaboration of model components
 - “Quick and easy wins” rather than expensive and time-consuming detailed modelling and analysis
 - HAZOP style Identification of dependencies of assets/components/resources within and across organizations/departments
 - **Basis for more detailed models**
- Examples
 - Rome telecommunications incident (developed in IRRIIS)
Probabilistic PIA (Pro-IA)

• We deal with both uncertainty in the real world (aleatory) and in our knowledge of it (epistemic)
 – behaviours, structures (especially for Information infrastructures)
• The measures of interest are probabilistic
 – overall aggregated risks (e.g. size of cascades vs. frequency)
 – probability of specific events (e.g. service loss, failure scenarios, “weakest link”)
• Pro-IA allows for modelling approximations and efficiencies
 – consequence and environment models, infrastructure models
 – explore cascade mechanisms
 – can explore many thousands situations (very large state space)
 – can search for interesting cases, link to trials/demos
• important role to complement deterministic, qualitative, trails and analytic approaches
Pro-IA models

- We used SANs (stochastic activity networks) and Möbius Modelling Tool (by the performability group at the University of Illinois at Urbana Champaign, USA) to define parameterised continuous time semi-Markov models.
- Finite state atomic components that “interact” with each other to make *impairment* and failure “contagious”:
 - Each component is modelled as a state-machine (a semi-Markov process)
 - Rates (distributions) of transition between states are *functions of the states of the ‘neighbour’ components* (“model of stress”).
- Embedded deterministic sub-models that can relate the “dynamics” of some subsets of the components on the state of other subset of components, e.g.:
 - DC/AC approximate power flow model for power flow components
 - Telecommunication service model.
- Components coupled via geographic location.
 - Spatial dependencies are important
 - **BUT not the only ones worth studying! (design faults, viruses are not spatial)**
PIA approach to modelling (inter)dependencies

Stochastic associations - sources of dependency and cascades

Transitions also influenced by flow based proogation e.g. from flow models, physics models

Transition probability λ increased with stress from connected or near neighbours states

$\lambda = \text{top}(sA, sB) + \text{geo}(sC)$
The Rome Scenario

• Service layer – 5 services:
 – Power Grid: Power Transmission and Power Distribution
 – Telecommunications: Fibre-optics network, fixed lines telephony, GSM

• Physical layer;
 – **830 modelled physical elements** - nodes and links (high-voltage cabins, trunks, fibre cables, transmitters, gateways)

• Dependencies
 – deterministic based on functional dependencies (telecommunications need power, power components controlled remotely via telecommunication channels)
 – stochastic associations – spatial proximity and cross-CI functional dependencies;
 – Non-probabilistic models (causality, flow models which may lead to overloading and tripping)

• Parameter values;
 – Probabilistic models: Failure rates, Repair rates
 – Deterministic: flows, capacity (of lines, batteries), power load, voltage levels, line resistance (ETHZ);

IFIP WG 10.4 workshop “Smart Grids: Security and Dependability”, 26-29 June, 2014, Amicalola Falls Lodge, Dawsonville, Georgia, USA
PIA:FARA Toolkit Prototype

• The toolkit consists of:
 – PIA Designer – an interactive tool to allow a modeller to ‘design’ an interdependency study.
 • Supported by Adelard’s ASCE visual editing tool (designed to support documenting safety-cases and customised for the needs of PIA)
 – PIA Run-time support – execution environment based on the Möbius tool (and in particular its SAN formalism) with very extensive customisation

• PIA Designer - a 2-layer approach:
 • Intra-services model - networks behind the individual services are explicitly modelled (as SANs with dependencies between the modelled elements)
 • Inter-services model – explicitly models (inter)dependencies between the services that belong to different Intra-service models;
 – Coupling points – path for interdependencies to propagate between services;
 • Deterministic models added via plug-ins to the system at run-time (DLLs and initialisation files, e.g. XML)
 • Exporting the model for ‘execution’ on a run-time environment such as Möbius’s SAN execution engine.
 • Visualisation of the probabilistic model simulation traces (using the Möbius built-in provisions or custom built utilities)
PIA:FARA Toolkit

IFIP WG 10.4 workshop “Smart Grids: Security and Dependability”, 26-29 June, 2014, Amicalola Falls Lodge, Dawsonville, Georgia, USA
Results

Small size cascades. Electricity network approx N-1 robust and then collapses

Some major cascades propagate to telco network
IFIP WG 10.4 workshop “Smart Grids: Security and Dependability”,
26-29 June, 2014, Amicalola Falls Lodge, Dawsonville, Georgia, USA
NORDIC 32

- Power transmission network – a reference network used widely in research
 - 32 sub-stations (more details are provided later)
- ICT network
 - SCADA system modelled at **high level of abstraction**
 - Control network in substations is compliant with IEC 61850 (an international standard defining an architecture and communication stack for substation protection and control)
- Model of cyber attacks
 - Model of an Adversary adapted to the specific context
- The PIA principles applied:
 - Stochastic dependence between the modelling elements
 - Hybrid models (i.e. stochastic and deterministic, e.g. Power flows)
 - Rewards – specific to the context, e.g. the power loss due to accidental failures or malicious activities, probability of large cascades.
NORDIC 32

IFIP WG 10.4 workshop “Smart Grids: Security and Dependability”,
26-29 June, 2014, Amicalola Falls Lodge, Dawsonville, Georgia, USA
ICT system
Sub-station model

Single Busbar Substation

- Generator bay
- Transformer bay
- Line bay
- Load bay

- Switches
- Bay LAN (Ring Configuration)

- Regional Control Center

- Process Lan
- Bay Lan
- Station Lan
- C/P Unit
- Protection Unit
- Control Unit

IFIP WG 10.4 workshop “Smart Grids: Security and Dependability”, 26-29 June, 2014, Amicalola Falls Lodge, Dawsonville, Georgia, USA
Risks in Industrial Control Systems

- Industrial Control Systems (ICS) demand different prioritisation of concerns (in comparison with enterprise systems):
 - Real-time - essential
 - High availability – paramount
 - Integrity - important
 - Privacy – typically not a concern
 - but seems important in power distribution systems
- Failures of Industrial systems have directly observable and measurable impact
 - In the enterprise systems the consequences of failures are less observable and the losses can easily be exaggerated
- Our work is on risk assessment when an objective utility/loss function can be defined
Model of Adversary

Models an attack on a firewall of a substation and the actions taken by an Adversary in case of a successful attack, which is **switching off a single power element** via its respective bay:

- a generator, or
- a load, or
- a line
Studies

A set of simulation experiments (studies) were completed to assess the risk of cyber attacks on the modelled power system

- We compared a base-line case with system under attack cases
 - Under the base-line case no attacks take place (the Adversary is inactive)
 - Under the system under attack case the Adversary is active
- The model was parameterised as follows:
 - Transitions of the state machines representing the power and ICT elements were parameterised using data provided by experts
 - For attacks we varied the rate of attacks (sensitivity analysis):
 - once a year, once a month, once a week and once a day.
 - The chances of success by the adversary were also varied do that we can distinguish between poor and good security policies
 - Repairs after successful attacks is achieved by either:
 - the standard control (for lines repair is almost instantaneously) or
 - dedicated measures additional: for generators and loads we modelled the repair time as an exponential distribution with an average of 3 hours (a typical figure for power systems).
The Adversary model

We varied the preferences of the Adversary

- A *non-intelligent* attacker - indifferent between targets (i.e. which sub-station to attack and which bay in a sub-station to switch off)
 - Different sub-stations are not equally important – some connect large generators/loads while some other – small generators/loads
- An *intelligent* attacker – greater generators and loads make a sub-station more attractive for the Adversary.
- For illustration of the difference we chose:
 - 5 largest generators are the only targets for the intelligent Adversary
 - 5 largest loads are the only targets for the intelligent Adversary which represent *positive correlation* between the importance index and the probability for a random target to be attacked by the Adversary.
The Intelligent Adversary Profile

Generators

<table>
<thead>
<tr>
<th>Substation ID</th>
<th>Attack Probability</th>
<th>Generator Capacity [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4072</td>
<td>0.50</td>
<td>4500</td>
</tr>
<tr>
<td>4051</td>
<td>0.25</td>
<td>1400</td>
</tr>
<tr>
<td>4047</td>
<td>0.10</td>
<td>1200</td>
</tr>
<tr>
<td>4063</td>
<td>0.10</td>
<td>1200</td>
</tr>
<tr>
<td>4011</td>
<td>0.05</td>
<td>1000</td>
</tr>
</tbody>
</table>

Loads

<table>
<thead>
<tr>
<th>Substation ID</th>
<th>Attack Probability</th>
<th>Load [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4072</td>
<td>0.50</td>
<td>2000</td>
</tr>
<tr>
<td>4043</td>
<td>0.25</td>
<td>900</td>
</tr>
<tr>
<td>4051</td>
<td>0.10</td>
<td>800</td>
</tr>
<tr>
<td>1044</td>
<td>0.10</td>
<td>800</td>
</tr>
<tr>
<td>4046</td>
<td>0.05</td>
<td>700</td>
</tr>
</tbody>
</table>
Measures of interest (rewards)

The measures used in the studies are related to the supplied power. The studies span over a period of 10 years (an arbitrary choice).

- some power is lost due to accidental failures
- power may also be lost due to successful attacks

The chosen measures of interest (rewards) were computed for:

- the *base-line* case and
- the *system under attack* cases
Measures 1: Supplied Power

The supplied power, $P_i(t)$, is a \textit{random variable}. We looked at two statistics:

- The average supplied power over the chosen interval of 10 years, $E[P_i(t)]$
- The standard deviation, $\text{StD}(P_i(t))$ is a measure of spread of the power delivered to consumers. Greater value indicate \textit{greater variability} of power supply, i.e. more \textit{unstable} power supply.
Measure 2: Probability of large outage

For each run we define a score function (an indicator) for each of the simulation runs as follows:

$$\omega_i \left(X \right) = \begin{cases}
1, & \text{if } P_i \leq X \text{ for } 0 \leq t \leq 10 \text{ years} \\
0, & \text{elsewhere}
\end{cases}$$

Then for a number of runs, \(N_r \), we express the probability of large outage as:

$$P \left(X \right) = \frac{\sum_{i=1}^{N_r} \omega_i \left(X \right)}{N_r}$$

We set \(X \) as percentage of the nominal power, 10,940 MW, and compute \(P(X) \) for \(X = 10, 20, 30, \ldots, 80, 90 \).
Results

• ~500 simulation runs of 10 years of operation
 • The number of events per run is in the range of 8000 – 32,000 including the attacks.
• Measure 1:
 • Over the population of 500 runs $E[P_i(t)]$ and $\text{StD}(P_i(t))$ are themselves random variable. We plot:
 • The distribution of $E[P_i(t)]$
 • The distribution of the standard deviation, $\text{StD}(P_i(t))$
• Measure 2:
 • Over the population of 500 runs we computed the probability that in a \textit{randomly chosen run} the supplied power, $P_i(t)$, drops at least once to less X% of the nominal power, 10,940 MW.
 • This probability tells us the likelihood of a “large outage” to occur in the modelled system.
Measure 1: **Attacks only case**

- The effect of frequency of the attacks on the power supply is shown below.
 - Power loss increases with the frequency of the attacks
 - Standard deviation increases, too.

IFIP WG 10.4 workshop “Smart Grids: Security and Dependability”, 26-29 June, 2014, Amicalola Falls Lodge, Dawsonville, Georgia, USA
Measure 1: Failures and attacks

- The combined effect of accidental failures and the frequency of attacks on the power supply is shown below.
 - Power loss increases
 - Standard deviation increases, too

![Average Load (Empirical CDF)](image1)

![Standard Deviation of Load (Empirical CDF)](image2)
Measure 2: Probability of large outages

Probability that the *power generation drops to X% of the nominal level* of 10,940 MW *at least once* in 10 years of operation.

<table>
<thead>
<tr>
<th>X[%]</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-attacks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.466</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>daily-attacks.major (AF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0.15</td>
<td>0.992</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>daily-attacks.major (NAF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.002</td>
<td>0.894</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>monthly-attacks (NAF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.808</td>
<td>1</td>
</tr>
<tr>
<td>weekly-attacks (NAF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.004</td>
<td>0.998</td>
</tr>
<tr>
<td>yearly-attacks (NAF)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.114</td>
</tr>
</tbody>
</table>

major - attacks on one of the 5 larger generators or one of the larger loads.
AF - accidental failures
NAF - no accidental failure
Future work

- Extending the model of Adversary
 - More sophisticated scenarios are an obvious direction
 - attacking **multiple** targets by a single Adversary,
 - attacks that create **hazards**, e.g. altering the threshold of a protection device, which will not manifest itself immediately, but may cause large outage later
 - A combination of cyber and physical attacks
 - Orchestrated (SWARM) attacks

- Looking into using simulation to help with quantification in applying fashionable theories in cyber security research
 - e.g. Nash equilibrium

- Given the great difficulty to parameterise Adversary models, **sensitivity analysis** for a plausible range of model parameters might be useful. This possibility was already demonstrated with the frequency of the attacks.

- The effectiveness of **defences against cyber attacks** in ICS can be studied, in case these can be varied and a decision is need which combination to apply. Among these defences are:
 - Frequency of repair
 - Use of sophisticated designs (e.g. using design diversity).
Conclusions

• We have built capability of quantifying the risk in complex ICS.
 – The methodology for interdependency analysis was adapted and tried on a non-trivial power system.
 – The impact of cyber security on industrial systems requires detailed hybrid models. In our view the system model must include:
 • a model of the Adversary,
 • a model of the ICS (e.g. Protection, control, etc.) and
 • a model of the controlled system itself (to evaluate more realistically the impact).
 – Tool support was developed (continuous improvements are under way)

• Initial observations:
 – Some initial indications suggest that not only naive attacks, but also attacks by an *intelligent Adversary* may have a *limited impact* on the ICS.
 – Measures of interest are important – risk perception varies with stakeholders.
 • “Black swan” events deserve particular attention

• *Open issues* related to methodology
 – how to do complex systems research
 – Issues of research methodology, testbeds, scaling, realism, realistic examples.
 • lack of general theories.
Questions

Thank you!