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Partners 



 Use Cases in  

Future Smart Grid  

- distribution grid scope 

- many different actors 

- renewable energy 

resources 

- use of existing  

communication  

networks 

 

 Complex Network Architectures with many protocols 

- Complex information flow management 

- Hard to ensure reliable data transport 

- Exposed to cyber attacks 

Background 
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Enable robust smart grid control utilizing heterogeneous third-party 

communication infrastructures.  

Robustness and interoperability target: 

 Variability of network performance  
impacting  

(a) quality of the input data obtained from  

energy related information sources 

(b) timeliness/reactivity of the  

performed control actions  

(downstream communication). 

 Security threats due to additional network  

interfaces and the use of  

off-the-shelf communication technology. 

 Seamless information exchange  

for heterogeneous infrastructures  

using IP based middleware functions for adaptive management and control.  

 

 Optimize interplay between two control loops 

 

SmartC2Net approach and objective 



SmartC2Net context 
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Adaptive  

Communication  

 
Adaptive Grid  

Control 

 
Adaptive 

Monitoring 



 Exploit heterogeneous telecommunication means 

- Exploit wireless communication means 

 Reduce cost of installation 

 Tackle performance issues 

- Deploy countermeasure against cyber-security attack 

 

 Provide grid control functionalities at LV level 

- As for now no control at LV is deployed, especially for faults 

management 

Challenge 
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 Architecture 

- Hierarchical control layers 

- Logical/physical  

components/interfaces 

- Communication  

networks and protocols 

 

 

 Global aim: 

- Manage energy flexibility on MV and LV levels. 

 

 

System scope and architecture 
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-> Aim at LV level:  

- Power quality 

- Energy flexibility 

-> Aim at MV level:  

- Power quality 

- Loss minimization 



 4 Use Cases 

- Synthetic views 

 Actors 

- Detailed IEC templates 

 Information flows 

 Control steps 

- Requirements 

- KPIs 

 E.g. Energy saved per month 

 Size of the grid affected by fault/attack (MW) 

 Power Loss 

 Voltage limit excess 

 

Use cases and architecture 
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Use Case: Medium Voltage Control 
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 Address the communication needs 

of a Medium Voltage Control 

(MVC)  

- Connection with Distributed 

Energy Resources (DERs). 

 Definition of an ICT architecture 

suitable for security analysis. 



Use Case: External Generation Site 
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 Improve LV grid operation 

- Low voltage (LV) grids are 

exposed to new load scenarios 

due to DER. 

- New high consumer demands 

from Electrical Vehicle (EV) 

mobility. 

 Automation and control techniques 

for future LV grids  

- Enables the DSO to utilize the 

flexibility of the LV grid assets 

 The objective is to demonstrate 

the feasibility of distribution grid 

operation over an imperfect 

communication network 



Use Case: Electric Vehicle Charge 
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 Satisfy charging demands of 

arriving EVs 

- Generated and stored energy 

is efficiently used 

- The grid is not overloaded. 

 Enable electrical vehicle charging 

to become a flexible consumption 

resource  

- To balance energy and power 

resources in the LV grid 

 Enable interoperation between 

new actors (e.g. CSO) and existing 

one (e.g. DSOs). 

 Enable DSOs to monitor state of 

low voltage grid under EV load 

conditions.  



Use Case: CEMS & AMR 
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 Collection and transmission of 

aggregated data from the 

households to the energy 

utilities/meter reading operators for 

billing and accounting 

 Improve distribution grid stability 

- Aggregate information of 

energy consumption in order to 

balance the distribution grid by 

enabling direct demand side 

management 

- Reduce energy costs for 

consumers by shifting flexible 

loads to less expensive time 

slots or improve utilization of 

local energy resources 

 



 Model-based analysis, to address early stage assessment of QoS and resilience indicators, 

considering faults and interdependencies effects, and to conduct large-scale analysis of 

QoS parameters of different technologies approaches adopted/developed in the project  

 Testbeds-based analysis, exploited as proof-of-concepts demonstrators for the project 

technologies in a wide range of relevant scenarios 

 

Evaluation of project outcome 
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Identification of measurements 

assessable through testbeds 

and relevant as input to models 

Complementarities exploited 

both inter- and intra- 

approaches; e.g:  
• complementarities among the 3 

testbeds 

• between state-space modelling 

and simulation 

Identification of Metrics for 

cross-validation 

Coordinated assessment plan: 



 MV control 

- MV control 

- Cyber attacks 

- Fully simulated 

 

 External generation site 

- LV/MV grid control 

- Network performance 

adaptation 

- Both simulated and emulated 

 

 Flexibility load and  

communication 

- LV Flexible load control 

- Network failure and 

adaptation 

- Fully simulated 

Overview of the three test beds 
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ICT and Grid Cascading Failure   
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Malicious 

Faults 

Accidental  

Faults 

Interdependences 

 Multiple faults 
- grid and 

control 

 Intra & Inter 

domain 

propagation 
- e.g., ’03 

Blackout 



Fault Management Architecture 
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 The focus is on: 

- Identifying which faults have occurred when QoS levels 

dramatically decrease. 

- Localize these faults. 

- Recovery actions can be initiated.  

- Prediction to foresee network fault scenarios before they occur 

and lead to disruption of the grid control 

 

Fault Detection & Diagnosis aims 
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Data and 
Recommendations 
Reporting/Request 

 

 
Identification and 

Localization 
 

Analysis 

Adaptive Monitoring 

System-wide Recovery and Reconfiguration 

Correlation 

Detection 
 

• Set of anomaly detectors 
• Specific for each domain (i.e., Grid and ICT) 
• Imperfect coverage and accuracy 

•Anomaly correlation 

•Anomaly diagnosis  
• Fault/failure identification and localization 
•Extra monitoring and test probes requesting 

Grid ICT 

• Fault/failure analysis 

•Cooperation of 
peer fault 
management 
elements 

Fault Management 

Isolation and 
Restoration 

•Reporting and notification of grid/network 
status and of local self-healing actions 
•Request of wider awareness and of 

recommendations for self-healing actions 

• Local self-healing of grid/network 
automatically performed 
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 Complex Event Processing (CEP) technology 

- It allows an efficient management of the pattern detection 

process in the huge and dynamic data streams. 

- It is very suitable for recognizing complex events and situations 

online. 

- It allows fusion of information generated by heterogeneous 

sensors supporting the goal of this work (i.e. Network sensors 

and Grid sensors) 

 

Fault Detection 



 CEP consists of the processing of events generated by the 

combination of data from multiple sources and aggregated in 

complex-events representing situations or part of them 

- Processing data coming from both grid and ICT domain can help to 

improve the fault diagnosis, because of their interdependencies. 

Fault Detection 
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TLC Network 

Fault 

Detection 

(CEP) 
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Fault Detection 
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 Grid ICT 
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 Grid ICT 
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Detection [1] [2] 
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• Data samples are checked 

against their prediction Statistical 

Predictor and Safety Margin 

(SPS) 

 

• If exceed the threshold then a flag 

is raised 

 

• Combination block combines flags 

coming from several indexes ai, 

each one weighted with weight wi 

 

 



 

 Correlate anomaly events which are detected in order to make 

fault diagnosis easier. 

 

 Which anomaly/ies should be correlated? 

- Interested failure models are needed and should be developed! 

 

 First of all failure scenarios that are relevant should be 

identified 

Correlation 
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 Main/MV Circuit Breaker: 
- CB failure 

- CB controller failure 
 Possiblity to have cascading failure 

- Remote commands not executed 

 Grid fault detector: 
- Unexpected Fault notification (False Positive) 

- Missed fault notification (False Negative) 

- Babbling failure 

 Assets Communication Means: 
- Connection lost 

- Latency not satisfying requirements 

- Packet error rate exceeding the allowed one. 

- Etc.. 

Challenging failure scenarios 
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Thank you! 

Davide Iacono (Resiltech, Italy) 

davide.iacono@resiltech.com 
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Overview of test bed components 
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Pro’s: 

• Realistic test environments for validation 

• Expertices at each test site fully utilized 

• Safe; no customers gets hurt 

• Feedback on practical limitations 

 

Con’s: 

• Limited numbers of assets per test bed 

• Time consuming 

• Difficult to change directions if needed 


