
Real-Time and Retrofit
Cryptography for the Grid

Kevin Driscoll

Presentation on 6/30/2014

With Supervisory Control and Data
Acquisition (SCADA) System Examples

Honeywell.com 

2

Outline / Overview

• Real-time and/or retrofit cryptography requirements are
different from existing cryptography requirements
– Current crypto algorithms are ill-suited for real-time / retrofit

• Some of our developments

– A symmetric encryption algorithm
(called BeepBeep) that overcomes
the problems with using existing
cryptography for real-time systems

– A small cryptography module that is easy
to insert into existing communication lines

– Tamper resistance for embedded software

– Broadcast / multicast command authentication that
uses very little computation and communication
resources compared to using a message authentication
code (MAC) or public key cryptography

Honeywell.com 

5

Why is real-time cryptography different?

 General IT
Computing

 Embedded
 Real-Time

Processor
general purpose

CPU

microcontroller
and/or DSP

Memory ** GB kB - MB

Power * 100 watts 100 mW (e.g., dongle)

Network bandwidth ** Gbps kbps

Payload variability ** extremely high
very limited variability

in rates and sizes

Payload size * 50 Kbytes **** 20 bytes

Latency and jitter * seconds milliseconds***

Integrity importance less than privacy greater than privacy

Physical security human attended not human attended

Net membership
open / anybody
(generalize)

closed
(specialize, optimize)

 * Difference of about 1,000:1

** Difference of about 1,000,000:1

*** Can be due to legacy polled
communication constraints (where
latency and jitter can accumulate),
and/or control loop constraints
**** Mean of my email in May

Can have several orders of magnitude difference in resources/constraints.

Honeywell.com 

6

Existing Cryptography Real-Time Problems
• Slow startup for each key change (due to “key scheduling” being done)

– Messages (and sessions) are small, less data to amortize startup cost over
– Latency (delay) and jitter are usually more important than throughput
– Only worst case timing counts, average is unimportant

• A missed deadline not helped by finishing early at all other times
• Real-time control systems often use repeating execution time slots of fixed size

– If startup slot is longer than average, all time slots must reserve wasted time

– May need to change key for each message (for unattended remote units)

• Uses too much data memory (cache misses hurt performance)
– Real time systems are multitasking with many context switches / sec that cause a

task’s cache entries to be evicted (replaced with other tasks’ data and instructions)
– To guarantee timing, one must assume most memory accesses cause cache misses
– But, crypto performance info (propaganda) assume a “pre-warmed” cache

• Needs more communication bandwidth than may be available
– Adds: initialization vectors, integrity check data, pads, key management, …

• Uses separate integrity algorithms or integrity mode wrapping
– Makes execution even slower and uses more power
– The added latency can preclude “lump in the cable” retrofits

• Many new real-time cryptography installations will be
retrofits, which further exacerbates the above problems

Honeywell.com 

7

Modem

Master

Modem

RTU

Modem

RTU

Modem

RTU

Modem

RTU

Latency Problem for Polled Systems (e.g., SCADA)

Added encryption:
new hardware or just
software inserted into
existing products

RF, wire, fiber, or
power-line carrier

RTU =
Remote
Terminal
Unit

Honeywell.com 

8

A poll loop incurs the latency of two encrypts and two decrypts for
each RTU. If AES (or similar block cipher) is used to provide
secrecy and integrity, a block (e.g., 128 bits) of store-and-forward
latency has to be added to the crypto computation latency, plus the
latency for any added initialization vector (IV) and/or integrity data
(e.g., 32 bits each). The poll loop time is increased by the sum of
these latencies times the number of RTUs polled. If handshakes
(e.g. ACK/NAK) are encrypted, this added time doubles.
Does the sum of all these added latencies exceed
the existing spare transmission time?

Latency Problem (continued)

Modem

Master

Modem

RTU

Modem

RTU

Modem

RTU

Modem

RTU

Honeywell.com 

10

Latency Problem (continued)
• The chart below shows the Max, Ave, and Min per-message latency

for two message types at different communication speeds

• The baseline is the latency without any encryption

• At 1200 baud, the time added to the poll loop duration due to the
combined SSCP crypto latencies for just the 15 status messages is
about 15 * (2.4 – 0.6) = 27 sec (almost half the entire 60 sec budget)

• To avoid exceeding the timing budget, this budget would have
to have almost 50% spare not allocated to other future growth

Encryption with
latency less than
1 bit-time would be
indistinguishable
from the baseline
(truly transparent)

Honeywell.com 

11

Crypto Attacks on Real-Time Systems

• Direct cryptanalytic attacks are difficult
– Chosen plaintext (fool system into encrypting messages of your choosing)

• Requires such invasive physical access (e.g., insider attack) that it would be easier just
to read out the key(s) (unless strong anti-tamper measures are used) or to bypass the
encryption. Bandwidth too low to generate many chosen-plaintext / ciphertext pairs

• However, need a design where loss of one key doesn’t compromise the entire network

– Chosen ciphertext (inject fake encrypted messages and watch response)
• Communication / crypto integrity mechanism(s) detect and reject most forgeries
• Existing fault-tolerance mechanisms reject most undetected forgeries

– e.g. select-before-operate (SBO) protocols

• Bandwidth is so low that only a small number of messages could be
sent before source is detected (by monitoring and alerting service)

– Known plaintext (includes correctly guessed plaintext)
• Bandwidth too low to get many plaintext / ciphertext pairs

• Security time horizon is usually “tactical” vs “strategic”
– Secrecy (depends on type of data)

• Control – up to a few hours
• Inventory – for a few weeks or months
• IP (e.g. recipes) – for a few decades (but, very rarely done)

– Integrity needed only until next key change
• Need only modest strength against cryptanalysis

– This doesn’t mean cryptographic security is unimportant

Honeywell.com 

13

Outline

• Real-time / retrofit cryptography requirements are
different from existing cryptography requirements
– Current crypto algorithms are ill-suited for real-time / retrofit

• Some of our developments

– A symmetric encryption algorithm
(called BeepBeep) that overcomes
 the problems with using existing
cryptography for real-time systems

– A small cryptography module that is easy
to insert into existing communication lines

– Tamper resistance for embedded software

– Broadcast / multicast command authentication that
uses very little computation and communication
resources compared to using a message authentication
code (MAC) or public key cryptography

Honeywell.com 

14

• Speed can be better than a bit per CPU clock, memory performance permitting
– BeepBeep speed is often limited by I/O memory speed

• Hardware-assisted encryption (e.g., for AES) can’t be faster

• Much lower latency and jitter than other algorithms
• Less than half the memory size of other algorithms

– For software that provides secrecy and integrity

• Includes integrity with secrecy in one pass over the data
– Allows “lump in the cable” (e.g., dongle) implementations

• With possible sub-bit-time latency
• Compare to AES’ greater than 128 bit-times of latency

• No significant power spike during key change / message start
– Supports devices that use scavenged power (e.g. dongles)

• Several thousand times faster and smaller than public key
• Typically has 1:1 byte replacement (to fit existing message sizes)

– Can exploit existing CRC or checksum for integrity check
• With sufficient existing bits, no crypto integrity check is needed

– Can minimize need for an added explicit initialization vector (IV) and anti-replay data

• Optimized for CPUs typically found in embedded, real time, control, and
communication systems (exploits hardware multiply instruction)

• With a sub-bit-time latency and no message expansion,
BeepBeep can be truly transparent to system timing

BeepBeep Benefits

Honeywell.com 

15

Ci

–

–

Pi

Ci+1

–

–

Pi+1

Observation: The plain-to-cipher
paths (shown in red) use just one
ADD and one XOR. If data arrives
least significant bit (LSB) first, each
plain bit can produce its cipher bit
before the next plain bit arrives;
i.e., latency less than one bit time.
(Note that crypto bit order can be
defined as LSB first, regardless of
communication defined bit order.)

BeepBeep
Block Diagram

(Bruce Schneier’s version)*

* Doesn’t imply design involvement nor
endorsement. In fact, his first impression
was: “Something that small and that fast
can’t possibly be secure.”

–

–

Re-Export

Controlled

??

(see FSE 2002 paper

reference on last slide)

Honeywell.com 

19

• Don’t use block padding (BeepBeep isn’t a block cipher)
• Minimize or eliminate Initialization Vector (IV) and anti-replay data

– Use existing data (e.g. any unencrypted changing header fields)
– Use explicit or implicit message identification (e.g., time or sequence numbers)

• Most real time systems have these (e.g., isochronous protocol implied time)

– Eliminate IVs and anti-replay data by chaining messages together
• Auto-keyed crypto-state is carried over between messages
• Can be used only with reliable message delivery
• Fast recovery procedure for lost/rejected messages

• Use plaintext’s existing check data for integrity
– Check data includes checksums, CRCs, parity, etc.
– Auto-key carries any alterations through to check data
– Crypto algorithm doesn’t need to do the check

• Reduces latency by not buffering messages

– May need to add bits if existing check bits aren’t enough
• Added bits will cause a message delay equal to the

number of bits that have to be added
• Failed integrity can be signaled by inverting the Stop bit or

corrupting other end-of-frame or end-of-message delimiter(s)
– Resulting framing error causes message rejection
– This is similar to one of our Ethernet fault-tolerance patents

Minimizing Growth in Message Size

Honeywell.com 

28

Outline

• Real-time / retrofit cryptography requirements are
different from existing cryptography requirements
– Current crypto algorithms are ill-suited for real-time / retrofit

• Some of our developments

– A symmetric encryption algorithm
(called BeepBeep) that overcomes
 the problems with using existing
cryptography for real-time systems

– A small cryptography module that is easy
to insert into existing communication lines

– Tamper resistance for embedded software

– Broadcast / multicast command authentication that
uses very little computation and communication
resources compared to using a message authentication
code (MAC) or public key cryptography

Honeywell.com 

29

• Inline addition of security components between
existing SCADA masters and their RTUs
– Between master serial ports and modem (bank)

– Between each field modem and its RTU

– Securing all modem-to-modem communications

• Transparent to existing communication

• Change of existing software is not required
– Can be a “lump in the cable” hardware dongle

– But, software retrofit implementations are an option
• Facilitated by BeepBeep’s: – Small code size and zero working data size

 – Few CPU cycles needed, even during startup

• It is possible to reduce deployment cost when existing master and/or RTU
software can be updated

– RTUs have to be remotely upgradeable, otherwise hardware dongle is cheaper

– Need a single RTU type, otherwise hardware dongle is probably cheaper

– Master and/or RTU vendor(s) need to be amenable to a software change

– However, retrofitting software can be more expensive if the source code and
knowledgeable programmers are not available

• Installation costs for added security components need to be very low

Basic Concepts for SCADA Retrofit

Modem

Master

Modem

RTU

Modem Modem

RTU RTU

medium
or media

single shared device
or a dongle per line

Honeywell.com 

30

Dongle on left. Programming adapter on right.

“Crypto Dongle” Implementation

• Easy key management

• Secure key escrow option

• Export approved (renew)

• Could use standards
(e.g. AES, FIPS 140)

• Tamper resistant

• Affordable security

• RS-232 DB-9 connectors

• Transparent functionality

– “Free” scavenged power

– Low latency operation

• Simple, rapid field retrofit

– need only a screwdriver

– no special skills

Honeywell.com 

32

Dongle vs “Bump” Installation Comparison

modem

 RTU

or

“bump”

 RTU modem

power
supply Temporary laptop

connection for
configuration and
commissioning

Mechanical support
(mounting hardware or shelf)

Need to add another EIA/RS-232 cable

dongle

Will all this fit into the
enclosure? How many
people will it take to
install (skills/trades)?
How long will it take?

AC? DC? voltage?
Effect on backup
battery life?

Honeywell.com 

35

 BeepBeep / Dongle Lump in Yes Yes High Transparent
 the cable (default) (~ 0)

Feature Comparison
• The table below was taken from “YASIR: A Low-Latency, High-Integrity Security Retrofit for Legacy

SCADA Systems” by Tsang, P.P. and Smith, S.W., 2008, in International Federation for Information
Processing, Volume 278; Proceedings of the IFIP TC 11 23rd International Information Security
Conference; Sushil Jajodia, Pierangela Samarati, Stelvio Cimato; (Boston: Springer), p. 449.

• The last row was added for BeepBeep implemented in a hardware dongle.

Honeywell.com 

37

Outline

• Real-time / retrofit cryptography requirements are
different from existing cryptography requirements
– Current crypto algorithms are ill-suited for real-time / retrofit

• Some of our developments

– A symmetric encryption algorithm
(called BeepBeep) that overcomes
 the problems with using existing
cryptography for real-time systems

– A small cryptography module that is easy
to insert into existing communication lines

– Tamper resistance for embedded software

– Broadcast / multicast command authentication that
uses very little computation and communication
resources compared to using a message authentication
code (MAC) or public key cryptography

Honeywell.com 

38

Tamper Resistance Ideas for Embedded Software

Without someone guarding it, software in remote devices could be
compromised and malware inserted. Some protection ideas:

• If the processor chip has cache or scratch-pad RAM of sufficient
size (e.g., approx. 0.5 kB) and at least 12 (preferably 28)
bytes of available non-volatile memory on chip
– Store a secret key in the non-volatile memory

– Use BeepBeep to encrypt the rest of the memory
• Fast and small enough to do decryption on the fly

• Keep all software in the CPU chip and lock it

• Use other hardware tamper protection techniques
• Authentication with detection of software tampering

– A secure site (e.g., the master) sends a challenge to a suspect site

– Suspect site hashes the challenge and the contents of the memory to
be protected and uses the result as the key for a message
authentication code (MAC)

– If the software for the hash and MAC also needs to be protected
• Fill any unused memory with incompressible random data

• Hash the entire memory

Honeywell.com 

39

Outline

• Real-time / retrofit cryptography requirements are
different from existing cryptography requirements
– Current crypto algorithms are ill-suited for real-time / retrofit

• Some of our developments

– A symmetric encryption algorithm
(called BeepBeep) that overcomes
 the problems with using existing
cryptography for real-time systems

– A small cryptography module that is easy
to insert into existing communication lines

– Tamper resistance for embedded software

– Broadcast / multicast command authentication that
uses very little computation and communication
resources compared to using a message authentication
code (MAC) or public key cryptography

Honeywell.com 

40

• Typical scenario: A master wants to broadcast simple
commands to many remote nodes through some
unsecure broadcast media (e.g., RF)
– Possible transmissions to large subsets of all nodes

(e.g., for load leveling / shedding / cycling)

– How does a remote node know that a command is authentic
and not a spoof?

• Also applicable to SCADA broadcast message problem

• Some costly or very limited “solutions”
– Public key signatures

– Message authentication codes

– A (too) simple adaptation of S/Key

– Timed Efficient Stream Loss-tolerant Authentication (Tesla)

• Our solution = a better adaptation of S/Key

Broad/Multi-Cast Command Authentication Problems

Honeywell.com 

44

References

• An example BeepBeep application is described in:

– Pete Bergstrom, Kevin Driscoll, John Kimball
Making Home Automation Communications Secure
Computer, v. 34 n.10, p. 50-56. October, 2001.

• Technical details of BeepBeep published in:

– Kevin Driscoll.
BeepBeep: Embedded Real-Time Encryption.
Fast Software Encryption 2002 / Lecture Notes in Computer Science
Vol. 2365, p. 164-178. February / May, 2002.

• Some applicable patents (US numbers, most have foreign equivalents):

– 6,804,354 Cryptographic Isolator Using Multiplication

– 6,763,363 Computer Efficient Linear Feedback Shift Register

– 6,760,440 One's [sic] Complement Cryptographic Combiner

– 7,277,543 Cryptographic Combiner Using Two Sequential
 Non-Associative Operations

– 8,051,296 System And Method For Initializing Secure
 Communications With Lightweight Devices

– 8,407,479 Tamper Authentication and Tamper Detection

– 8,549,296 Simple Authentication of Messages

