Vision: Towards an Extensible App Ecosystem for Home Automation through Cloud-Offload

Yuichi Igarashi

Hitachi Ltd., Yokohama Research Laboratory

Kaustubh Joshi

Matti Hiltunen

Richard Schlichting

AT&T Shannon Labs

June 15,2014@MCS'14

Background: Home Automation

- Home Automation Systems
 - Sensors and actuators
 - Home controller(HC)
 - Resource constrained devices
- Many home applications
 - Energy management
 - Home Security
 - Health care
 - Remote monitoring

An ecosystem for home applications

- Vision: users add new home applications as in smartphone ecosystem
- <u>Problem</u>: home controllers are inflexible and resource constrained
 - Some applications require a lot of HW resources.
 - E.g., one video stream consumes 20-40% of CPU resources.
 - HC is not easy to upgrade or replace due to cost reasons.

We need a more flexible and powerful platform for home applications.

Cloud-offloading for the Home

Enhancing a home controller with a cloud backend: Programmable cloud Enabled Home controller system(PCEHC)

Cloud Offloading for mobile

- Cloud Offload have been proposed for mobile applications
 - games, speech recognition, and navigation.
 - MAUI: dynamic energy-aware offloading.
 - CloneCloud :high speed execution and energy saving.

Do mobile offloading techniques work for the home?

Characteristics of home applications

- Support wide range of devices
 - Zigbee/Z-wave sensors, USB cameras, door locks, switches, microphones, etc.
- Run multiple applications at the same time
 - Energy management, home security, healthcare, monitoring
- Applications run continuously even when user not home

What is needed for Home Applications?

- Require less human interaction than mobile phone apps
 - Allow looser interactivity options, e.g., pure cloud based
- Support safety applications even if network disconnected
 - E.g., burglar alarms, healthcare
- Support multiple continuously running control applications
 - Need offload decision making with system-wide perspective

Key Idea: application decomposition

- A new application design paradigm
- Applications composed of App and Applet
 - App is full featured implementation
 - Applet is smaller and provides reduced functionality

System-level functions of Home Controller

- System-wide scheduler for apps/applets
- State synchronization via shared objects
- Control transfer on network disconnection

Preliminary Experiments

- Home controller
 - Raspberry Pi with 700MHz ARM, 512MB of RAM, Raspbian OS
 - Multiple sensors: Z-wave controller, video camera
- Cloud server
 - x86 3.1GHz dual core with 4GB of RAM, Ubuntu 12.04
- Key Highlights
 - Multiple applications can easily overwhelm home controller
 - Remote control apps can be offloaded over 3G/LTE
 - Streaming media based applications always need applet

Multiple apps can overwhelm local resources

- Home Element runs home automation and video analysis apps
 - Z-way and web server

Z-wave control from the cloud is feasible

Z-way and web server apps in the cloud

Virtualize serial port using Socat to offload GPIO

Streaming media based applications need applet

- Video viewing application in the cloud.
- Attached virtually USB devices to the cloud using USB/IP

Result: Cloud element

- can remotely control light weight USB devices
- can not capture video stream due to frame loss on a server

Conclusion and future work

- Home automation has unique requirements
- Architecture for cloud-enabled home controllers
 - Application-level decomposition
 - System-wide offload decisions
 - Shared object between the home and the cloud

• Future work: implement our vision and evaluate

Questions and Comments?