
Where Should I Look? Using

Metrics to Prioritize Vulnerability

Removal Efforts

Laurie Williams

Department of Computer Science

North Carolina State University

Recognition

• Distinguished (Graduated) PhD Students
– Andy Meneely (RIT)

– Michael Gegick (US DoD)

– Yonghee Shin (George Mason)

– Nachi Nagappan (Microsoft Research)

• In Process PhD Student
– Patrick Morrison

• Colleagues
– Kim Herzig (Microsoft Research)

– Brenden Murphy (Microsoft Research)

– Tom Zimmerman (Microsoft Research)

Agenda

• Using metrics to predict the presence of

security vulnerabilities in code

– Static analysis alerts

– Developer metrics

– Complexity

– Traditional code metrics (fault prediction)

• Misc observations

Vulnerability- and Attack-prone

Components

Fault-prone component

Likely to contain faults

Failure-prone component

Likely to cause failures

Reliability context Security context

Vulnerability-prone
component

Likely to contain
vulnerabilities

Attack-prone
component
Likely to be exploited

Metrics – What are they good

for?

• Prediction: We can use them to predict

where vulnerabilities are and then prioritize

our validation and verification efforts to

those areas

• Change action: We can use them to

change our behavior and our practices:

“actionability”

General procedure

• Gather “internal” metrics about a product
• Gather discovered vulnerability data about a

product
• Put the metrics into a statistical model: to look

for correlations, predictions
• Validate model using a cross validation

technique or with next release

• Vulnerability-prone component/file are those that
have at least one vulnerability identified during
testing or reported by customers or third-party
researchers.

Threats to Validity / Challenges

• Residual/latent vulnerabilities in software are

possible.

• Vulnerability count is a function of security testing

effort, customer usage, ease of attack, the

attractiveness of the target, and malicious intent.

• Identified vulnerabilities

are scarce.

http://www.123rf.com/photo_1268359_needle-in-a-

haystack-finding-or-loosing-things.html

Subject Project: Firefox 2.0

Neutral
(8721)
78,9%

Faulty but
not

vulnerable
(1967)
17,8%

Faulty and
vulnerable

(294)
2,7%

Vulnerable
but not

faulty (69)
0,6%

Agenda

• Using metrics to predict the presence of

security vulnerabilities in code

– Static analysis alerts (M. Gegick)

– Developer activity metrics

– Complexity

– Traditional code metrics

• Misc observations

Static
Analysis

Developer
Activity

Complexity
Traditional

Code

Hypotheses: Static Analysis

• Above a statically determined threshold,

static analysis vulnerability alerts are in

the same components as vulnerabilities

that are likely to be exploited.

If a developer has such poor coding practices that
he/she causes lots of static analysis alerts, you should
look carefully in that area for other implementation bugs
and larger design flaws.

Static Analysis Alerts

• Hypothesis 1: Source code analysis tool alerts

are in the same component as additional coding

vulnerabilities and vulnerabilities associated with

the design and operation of the software system.

• Hypothesis 2. Additional metrics that include

code churn and size, churn, coupling, and faults

found manually increase the accuracy of a

predictive model that uses source code static

analysis alerts alone.

Empirical Case Studies on Three

Commercial Software Systems

• Three commercial telecommunications software
systems
 Two systems from one anonymous vendor
 Cisco Systems system

• Each system has over one million source lines of
C/C++ code

• Each system is in a different telecommunications
product sector.

Correlations between static analysis alerts and

vulnerability count are positive and significant.

• Since correlations are significant, these metrics can be used
in statistical models.

• Security-related alerts have same correlation as all alerts

• Implication – no need to sift through static analysis alerts to
use as predictor

Metric

Case study 1

(component-level)

Case study 2

(file-level)

Case study 2

(component-level)

Case study 3

(component-level)

All SA alerts 0.2 0.2 0.6 0.2

Security SA

alerts 0.2 0.2 0.5 0.2

Agenda

• Finding the security vulnerabilities in code

– Static analysis alerts

– Developer activity metrics (A. Meneely)

– Complexity

– Traditional code metrics

• Misc observations

Static
Analysis

Developer
Activity

Complexity
Traditional

Code

Software is about People

Team Problems  Software Problems

Linus’ Law & Security

Is this really true? (Do the numbers match up?)

– More people  Too many cooks in the kitchen?

“Given a large enough beta-tester and

co-developer base, almost every problem

will be characterized quickly and the fix

obvious to someone. […]

Many eyes make all bugs shallow.”

- Eric Raymond

More Co-Developers  Diverse perspectives Large knowledge

base  Secure Software

Case Studies

Three empirical case studies

– RHEL4 Linux kernel, PHP, and Wireshark

– Pre-release version control logs

– Post-release security vulnerabilities

– Viewed files as vulnerable (>0 vulnerabilities) or neutral
(none found yet)

RHEL4 kernel PHP Wireshark

Number of committers 557 84 19

Source code files 14,454 1,039 2,688

% files vulnerable 3% 6% 3%

Pre-release version

control log data
16 months 2 years 2 years

Years of security data 5 years 3 years, 5 months 3 years, 5 months

How Many Developers?

• Metric: NumDevs
The number of distinct developers who

changed a given source code file

Files changed by 6 or more developers were 4 times more

likely to have a vulnerability, (p<0.001, MWW)

(…not quite what Linus’ Law says…)

Vulnerable files had more developers than neutral files (p<0.001,

MWW)

In all three case studies…

Unfocused Contributions

/fs/exec.c

Unfocused Contribution

Examined files changed by many developers who

were working on many other files at the time (an

“unfocused contribution”)

Take into account the other

files that the contributing

developers were working on

… … … … ………

Used contribution

network centrality

(CNBetweenness)

Vulnerable files had a higher

CNBetweenness (p<0.001, MWW) than

neutral files.

Agenda

• Finding the security vulnerabilities in code

– Static analysis alerts

– Developer activity metrics

– Complexity (Y. Shin)

– Traditional code metrics

• Misc observations

Static
Analysis

Developer
Activity

Complexity
Traditional

Code

Why Complexity and Complexity

Metrics Matter?
• Security experts say

– Bruce Schneier
• “Complexity is the worst enemy of security”

– Dan Geer
• “Complexity provides both opportunity and hiding places for attackers”

– Gary McGraw
• “A third trend impacting software security is unbridled growth in the size and

complexity of modern information systems, especially software systems”

• Complex code is difficult to understand,
test, and maintain

• Can complexity metrics find vulnerable
code locations?

Subject Projects

• Firefox

– 34 releases from Release 1.0 to Release

2.0.0.16

– 11 combined releases consisting of three to

four minor releases

• Red Hat Enterprise Linux 4 kernel (RHEL4)
Project # of Files LOC Files with

Vulns.

% of Files

with Vulns.

Firefox 10,320 ~

11,080

2 MLOC ~

2.3 MLOC

14 ~ 123 0.126% ~

1.192%

RHEL4 13,568 3 MLOC 194 1.4%

Metrics

• 14 code complexity metrics

– e.g. lines of code, cyclomatic complexity,

comment density

• 3 code churn metrics

– e.g. Frequency of file changes, lines of code

changed, and new lines of code

• 11 developer metrics

– e.g. Number of developers, betweenness,

closeness

Results: Discriminative Power

of metrics Firefox RHEL

Code complexity 14 13 13

Code churn 3 3 3

Developer 11 10 9

 Most metrics provided discriminative power at p < 0.05

Agenda

• Finding the security vulnerabilities in code

– Static analysis alerts

– Developer activity metrics

– Complexity

– Traditional code metrics (Shin, Zimmerman,

Gegick, Morrison)

• Misc observations

Static
Analysis

Developer
Activity

Complexity
Traditional

Code

Support for Traditional Metrics with

Windows Vista (Zimmerman)

More on Windows Vista

	

What you look at will

likely be a

vulnerability …

…. But many

vulnerabilities will be

missing.

Agenda

• Finding the security vulnerabilities in code

– Static analysis alerts

– Developer activity metrics

– Complexity

– Traditional code metrics (Shin, Zimmerman,

Gegick, Morrison)

• Misc observations

Static
Analysis

Developer
Activity

Complexity
Traditional

Code

Comparison of Fault Prediction and

Vulnerability Prediction (Shin)

• Goal
– Investigate whether fault prediction metrics models are

equal to or better than vulnerability prediction models in
predicting vulnerable code locations when the same
traditional fault prediction metrics are used

• Hypothesis
– A vulnerability prediction model can predict vulnerable

code locations better than a fault prediction model

• Metrics
– Code complexity, code churn, and prior fault history

metrics

• Subject project
– Firefox 2.0 and its minor releases

Observations

• When built with traditional fault prediction

metrics, vulnerability prediction

performance is similar when the model is

trained on all faults and when it is trained

on vulnerabilities

Observations - 1

• Static Analysis Alerts

– Predictive: Static analysis alerts are indicative

of all security vulnerabilities.

– No pre-processing to determine true positive

necessary

Observations - 2

•Developer activity metrics

– Actionable and predictive

• Don’t allow too many people to change same (critical)

file

• Watch for the “hummingbirds” that change many files.

•Complex code

– Actionable and predictive: Complex code is less

secure

Observations - 3

• Traditional code metrics

– Predictive: Traditional code metrics can be used

to find vulnerabilities

– Support that vulnerabilities have the same

characteristics as faults

