Designing self-manageable protocols for
dependable distributed systems: an experience
report

Raimundo J de A Macédo
Distributed Systems Laboratory (LaSiD)
DCC/UFBA

www.lasid.ufba.br

IFIP 10.4 Working Group Meeting
Visegrad, Hangary, June 29, 2013

Presentation outline

v'Why self-management is needed?
v A classification for self-manageable distributed systems
v' Self-management for dependability

v'Final remarks

Why self-management is needed?

Computer systems are becoming more dynamic and complex in many ways:

@ Large scale cyber-physical systems
€ Data canters for cloud computing
€ Llarge scale web based e-commerce systems, etc.

Such systems have to cope with

Component failures
Changes in the computing environment
System updates (new component versions)

O O O O

Functional changes (new user/system requirements)

They must adapt to ever changing environment and user requirements. Adaptation must be on-
the-fly and without complete previous knowledge or anticipation of what may occur

=» Feedback loop is required for sensing both the environment and system requirements
and the system should adapt itself to current running conditions, from previously
specified objectives

Related Areas

€ Dependability (standard and/or with resilience - JC Labrie DSN 2008,
A. AviZienis 10.4 IFIP Meeting, Visegrad 2013)

€ Autonomic computing (systems and networking)

& Self-adaptive systems (mostly soft Eng. flavour)

@ Robotics and automation

@ Real-time and embedded systems (systems/hardware flavours)

¢ Al
&®others

Each one with its own set of conferences and journals, and
particular Jargons

There are many issues: heterogeneity, SLA management,
monitoring, system dynamics modelling, etc.

A classification of self-manageable distributed systems

They can be classified according to the degree of control they

can exercise upon the related adaptive mechanisms, if any [“A

Vision on Autonomic Distributed Systems”. Raimundo Macédo, WoSiDA 2012,
[URL:http://www.macedo.ufba.br/WoSiDA-ST3-1.pdf]

1. Non adaptive: no adaptation is provided
2. Offline adaptive: adaptation is possible but only before execution -
no runtime adaptation

3. Online adaptive: adaptation at runtime from pre-defined objectives -
policies cannot be controlled at runtime

4. Autonomic adaptive: adaptation policies or objectives can be
modified at runtime

Self-manageable distributed systems

Self-management for dependability in distributed systems

Protocols should allow upper-layer applications or services to control their behavior from certain
policies or objectives

Protocol

Objectives Reconfiguration

>l Building
Block

Controlled

Controller

Protocol
Performance

QUESTIONS!

What and how to specify protocols objectives ?

How system dynamics can be modelled ?

What components and how frequently should them be monitored?
Where to actuate (variables) to follow protocol’s objectives

What and when to adapt the system ?

AN N N NN

Answers depend on particular protocols and computing environments !!

A quick overview of case-studies for three commonly used
building blocks for dependable distributed systems

(partially synchronous distributed system model)

J Byzantine replication

Adaptive request batching for byzantine replication. Alirio Sa, Allan Freitas, and
Raimundo Macédo. Oper. Syst. Rev. 47, 1 (January 2013), pp 35-42.

J Group Communication

Enhancing group communication with self-manageable behavior. Raimundo
Macédo, Allan Freitas, Alirio Sa Journal of Parallel and Distributed Computing, 73,
4 (April 2013.), pp 420-433.

 Failure detection
QoS Self-configuring Failure Detectors for Distributed Systems. Alirio Sa and
Raimundo Macédo. 13th International IFIP Conference on Distributed Applications

and Interoperable Systems, DAIS 2010, Amsterdam, The Netherlands, June 7-9, 2010.
LNCC, 6115, pp 126-140.

The case for byzantine replication

Adaptive request batching for byzantine replication. Alirio Sa, Allan Freitas, and
Raimundo Macédo. Operating Systems. Rev. 47, 1 (January 2013), pp 35-42.

PBFT [Castro & Liskov] is considered by many the first successful
implementation of byzantine replication. It implements a series of
performance optimization mechanisms: request batching, replica
rejuvenation, etc.

These mechanisms must be properly configured in order to produce the
aimed performance improvements: Size and timeout for batching,
checkpoint period, rejuvenation period, primary backup failure
detection timeout, etc.

Motivation for self-manageable byzantine replication:

Automatic tuning of configuration mechanisms, based on current
running conditions

We developed a self-manageable version of PBFT where the batch size and batching

timeout are regulated by a controller in order to optimize message throughput and
delivery time

It is online adaptive because the objective — optimizing throughput — is not modified at
runtime. Online adaptive is a weaker form of a self-manageable distributed system.

NOTE: as far as the configuration of batch size and timeout is concerned, original PBFT
is offline adaptive

Self-manageable PBFT

batch size and timeout

Controller

client activity
protocol /system performance

We abstracted PBFT as a pipeline with 4 stages:

@Message checking (to discard invalid or non-authenticated messages)
@Buffering and Batching (to handle a number of client requests)
@Ordering (to agree in a order to request processing)

Processing (to compute and reply the requests)

Our basic idea is to keep the pipeline as busy as possible

Buffer'mg
— —I> —> Ordering | ———» | Processing |—»
Bafchmg T]\

chegada das requ15|goes Io'l'es de ordem de emissdo das
requlsrgoes validas requisigdes execugdo respostas

descar'te das
requisi¢des invalidas

Tradeoffs for the Batching

Timeout
O must be long enough to allow for the grouping of a number of requests

O must be short enough to guarantee at least one batch is in the ordering
stage (too long timeouts may make the ordering stage empty)

Size
O larger sizes will decrease cryptographic and ordering costs, but, on the
other hand, may delay message delivery

To optimize throughput, timeout and size are periodically adjusted to
current client activity and protocol/system performance

Client . : . . Request
creckng [eacnn [~

Client activity Protocol/system performance

Protocol/system performance

Mean time to order and process V/TE;, = (1 —a)* MTE._, + o x TE;

Client activity

Mean time between request arrivals /T A = t—t

Nreq

t = current time
t, = starting time for a primary replica r
N,q = NUMber of requests

Calculating batch size (BS) and batching timeout (BT)

Periodically adjust
BT = MTE at least one batch is submitted after another one is processed

BS — (.:\[TE" If protocol is slower than request arrival,

MTA | BSwillincrease to optimize throughput

200.0

150.0

= 100.0
(=18 i

.

50.0

0.0

1 25 50
Number of Clients

E

100

B B5=1, BT=1ms m B5=1, BT=1000ms B5=50, BT=1ms
B B5=50, BT=1000ms B SELF

Power (PW) = throughput / delay

The case for group communication

Enhancing group communication with self-manageable behavior. Raimundo
Macédo, Allan Freitas, Alirio Sa. Journal of Parallel and Distributed Computing,
73, 4 (April 2013.), pp 420-433

Varied properties : message ordering, view synchrony etc.

Varied implementation styles : asymmetric, symmetric, logical clock
based, etc.

Usual Behavior: sent messages are kept in buffers until prescribed
properties can be guaranteed and/or until failures are handled

send

Net Delay Protocol Delay >
Neliver

Receive

Total delivery delay depends on loads, protocol overhead, and failures

The self-manageable approach for group communication

Resource consumption abstraction as a function of message end-to-end
delays

The self-manageable approach manipulates a single variable (time-
silence) to control the protocol behavior (message overhead, delivery
delay)

If application messages are not sent to provide L
block completion/stability, we have to force this ;
block completion/stability with protocol messages:

Time silence mechanism is triggered, if the process does not
contribute for this completion after a period of ts

A.

Self-Manageable Approach
General View
User/system defines an upper-bound for resource consumption, for the protocol
can be changed at runtime

AUTONOMIC ADAPTIVE

The approach computes the overhead which can be imposed by the CB protocol in such a
way that it doesn’t infringe the expected upper-bound (best effort)

—=Such overhead is a dynamic set-point for the protocol and it is computed considering:

(a) User expectation;
(b) The state of the computing environment;
(c) The performance of the group communication protocol;

The approach defines a new operation point for the CB protocol based on the dynamic
imposition for the overhead set-point.

Causal Block
Engine

time-silence

J

Dynamic set-point

Controller

protocol overhead

. Self-Manageable Approach

Output Design and Implementation issues — Controller component

Controller Component

Maximal :
inter-arrival:
1|

Current :
overhead i
4

Current

resource
Overhead

New time-silent

i consumption: bomeoeeee :
- : requirement

--------------------- I Set-point ContrOI
User-defined .
requirement -Esttmator law

= The controller uses the output of the sensor component and the user-defined
requirement in terms of resource consumption to estimate a new time-silent.

Self-Manageable Approach

Design and Implementation issues — Controller component

A
rcmax4— _ 0 0
| s e
_ remin + Arc ovhmin + Aovh
ke — 5
g rcmax —remin - ovhmax — ovhntin
; rg z
S 1 0
2
&
[onh = A= 0vhmax]<—
rcmin 4—
| |
I [>
ovhmin Overhead ovhmax

— The control design assumes a linear relationship between overhead and resource
consumption.

= This relationship gives to us a intuition about what a variation in resource
consumption means in terms of overhead and vice-verse.

Self-Manageable Approach

Design and Implementation issues — Controller component

the current resource consumption observed in environment

—— user-defined resource consumption for the group application.

—>rcd-l---eeeeeeeeee rc

= The protocol can
%\, increase overhead.

7
-,
.
-,
.
.,
~ 1
~ -,
~
ke e N - — = = -
~
~ ’
N .,
N -
.,
S -,

= The protocol must
decrease overhead.

[Arc = (rcd — rc)]

Performance Evaluation

Self-Manageable adaptation For Change in Desired QoS Setup

Desired QoS (Set-point) changing at t = 5000 ms

overhead

20,0% -

17,5% -~

15,0% -~

12,5% -

10,0% -~

0

1000 2000 3000 4000 5(

time

00 6000 7000 8000 9000 10000

(ms)

49

47

45

43

41

blocking time (ms)

39

37

35

time (

o] 1000 2000 3000 4000 50Q0 6000 7000 8000 9000 10000

ms)

Change on sla (rcd varies from 25% to 30%)

The case for failure detectors

QoS Self-configuring Failure Detectors for Distributed Systems. Alirio Sa
and Raimundo Macédo. 13th International IFIP Conference on

Distributed Applications and Interoperable Systems, DAIS 2010, Amsterdam,
The Netherlands, June 7-9, 2010. LNCC, 6115, pp 126-140.

Trade-offs in the configuring of a failure detector (detection
timeout and monitoring periods):

e Larger detection timeout and/or larger monitoring periods imply on
larger detection latency.

e Shorter detection timeout can imply on more detection mistakes.

e Shorter monitoring periods implies on higher consumption of the
computing resources and unreliable detections in cases of exhaustion
of the computing resources (processing and communication).

e CHALLENGE

— Build a failure detector that self-adjust its operating parameters
due to changes on the computing environment or application
requirements - from predefined QoS parameters

* BASIC DIFFICULTY

The environment characteristics are unknown and can change over
time.

e Load variations, changes in available computing resources, faults etc.

=» The dynamic behavior of the distributed environment is hard to
be characterized by specific probability distributions.

Our self-manageable approach (autonomic adaptive)

Environment and Detection Service Sensing
Observes variables related to environment behavior and quality of detection delivered.

Detection Timeout Regulation
Adjust the detection timeout to allow more reliable detection with lower impacts on
detection time.

Monitoring Period Regulation
Adjust in the monitoring period to allow a faster detection with lower impact for other
applications which share the computing environment.

Basic Module of the Failure Detection Service
(Plant or Managed Element)
f—Monitoring Period
and Timeout Are you alive? Are you alive?
S . Vi 0\ .
(TD", TM®, TMR", RC") — _ —> _
Autonomic Manager Monitor Monitored
— (Controller) Process Process
(m) \/] (p))
‘_ ‘& .
Received eartbeat!! heartbeat!™ /
\ / Heartbeats

Timeout Regulation

TMR" ™Y TDY
I I

TIMEOUT REGULATION MECHANISM

rtok | Monitor
Process(pi)

|

.

Heartbeat hb,

Monitoring period regulation is a little bit more complicated

(see the paper)

Final words

A challenge in designing self-manageable DS is how to map
business rules and policies into protocol objectives. This
mapping greatly depends on mastering related DS building
block dynamics and its performance tradeoffs.

(JModeling the behavior of the computing environment and
distributed system protocol is another challenge, which we
have addressed (though, to a limited extend) by applying
feedback control loop theory.

JWe are applying the concepts and protocols presented here
in the construction of an autonomic dependability manager
to a federated cloud system (Project JIT CLOUDS -
CTIC/RNP)

Thanks !

