Carnegie Mellon

External Runtime Monitoring
for Critical Embedded Systems

Phil Koopman, CMU
Aaron Kane, CMU ECE
Mike Wagner, CMU NREC

(Research Funding from General Motors)

ectrical & Computer
) ENGINEERINE '

Overview

 Goal: Assure critical properties met
 Especially cost-sensitive, adaptive systems
« Large deployed fleets; everyday products
(e.g., self-driving cars)
 How can you demonstrate that they are met?

e Discussion of available building blocks
e Testing, formal methods, runtime verification

e QOur current area of work:

e External runtime monitors — an attempt to go for
cross-area low-hanging fruit

Electrical & Computer

Q) ENGINEERING

Problem Statement

 How do you make sure “robots” are safe?
e Especially including autonomous venhicles
« (Big ideas likely apply to all embedded systems)

 Need to take into account:
e Significant cost, time-to-market constraints
e Continual changes to software code base
e Increasing complexity
« Likely gaps in/lack of rigorous design artifacts

o Reality check: They're going to be built with us or
without us. How can our community be relevant?

ectrical & Computer
) ENGINEERIN

Approach: Testing

o Strategy: Test it into submission
 Find the bugs; test some more; system-level testing
* Inindustry, this is the default strategy

e Strengths:
 There’s nothing like the real thing
e Historically works OK on non-software systems

e Weaknesses:

 Need to test at least 3x MTBF — problem when MTBF is comparable
to total fleet exposure

 Need to recertify after even one line of code has been changed
 Hard to test failure modes (e.g., need fault injection)

e Possible way to improve:
 Use testing to validate quality rather than create quality

Electrical & Computer

{ ENGNEERINE

Peer Review

o Strategy: Inspection of design artifacts

e Strengths:
 Expect to find 50% of the bugs for 10% of budget

 Weaknesses:
« Management bias to create functionality, not do reviews
o Usually better at unit level than system level
 Informal; monitoring bug find rate helps assess effectiveness
« Many designers are bad at imagining failure modes in a review

e Possible way to improve:
« Can we say something stronger about review coverage?
e Better techniques for system integration review

ectrical & Computer
) ENGINEERINE

Static Analysis

o Strategy: Lint-like tools to analyze source code

e Strengths:
 Helps find implementation problems
 (Dynamic analysis may help too, e.g., bounds checking)

« Weaknesses:
e Only good for narrow implementation problems
e False positives unless adopt a lint-friendly coding style

e Possible way to improve:

 Higher level static analysis (e.g., at architecture level) —
some work in this area

ectrical & Computer
) ENGINEERINE

Carnegie Mellon

Your List of Favorite Informal
Analysis Techniques Goes Here

* Robustness testing & fault injection

ectrical & Computer
) ENGINEERINE

Formal Representations

o Strategy: Mathematically rigorous expression of
specification and a model of system

e Strengths:
« Mathematically rigorous; helps think about system

 Weaknesses:
e Assumptions necessary in proofs may be significant
 Need to ensure specs & system model are correct
e Scalability problems to cars with 1M+ lines of code
« Temporal aspects can be challenging

e Possible way to improve:

 |Improve accessibility to everyday engineers;

() B compu “light weight” approaches to temporal properties
ENGINEERING

An Aside on Specifications

e Multiple representations of a system:
o System specification: what it does
e System model: how it is bullt

e But, it Is usually unnecessary to prove the

system Is perfect

 Really, what you care about is only the critical
aspects of system behavior

« =>» Want a “safety specification”
o (Or “critical property specification”)

* |In practice, subset of system spec doesn’t work
— Need an entirely different safety spec

ectrical & Computer
) ENGINEERIN

Carnegie Mellon

Model Checking

o Strategy: Prove properties about formal
representations, e.g. via exhaustive search

e Strengths:
 Mathematically rigorous; provides counter-examples
e Impressive gains in scalability using SAT solvers

« Weaknesses:
 Need to know what questions to ask (“safety spec”)
« Same general pro/con as formal representations

e Possible way to improve:

e Biggest challenges (IMHO): adaptive systems and
modeling faulty system behavior

ectrical & Computer
) ENGINEERINE

Carnegie Mellon

Other Formal Analysis

Your list of favorite formal static techniques
goes here...

* Design synthesis from formal specification
 Model-based design

ectrical & Computer
) ENGINEERIN

Acceptance Test Style Techniques

o Strategy: Check for correctness at run time

e Strengths:
o System being tested is the real system — warts and all
e “Checking” can often be simpler than “doing”

« Weaknesses:
 Need to know what properties to check (“safety spec”)
 Doesn’t “prove” anything
» (Not strictly true... proves that the test’'s behavior trace is OK)
e Possible way to improve:
 Formalize the acceptance tests
» Architectural patterns to separate doing from checking

ectrical & Computer
) ENGINEERINE

Safety Kernels

o Strategy: Safety kernel blocks unsafe actions
(“safety gate” architecture pattern)

e Strengths:
 Works on the real system, not just a model
* Operating system provides some isolation

e Weaknesses:

e« Same as acceptance tests
e Must predict effect of action on system to work
 Need to recertify kernel? (How good is isolation?)

e Possible way to improve:
e Stronger isolation to avoid recertification

ectrical & Computer
) ENGINEERINE

Runtime Monitoring

o Strategy: Trigger a flag when system misbehaves at
runtime (“safety monitor” architecture pattern)

e Strengths:
e Similar to safety kernel
 Doesn’'t need to predict; just react

e Weaknesses:

 Technically, system is momentarily unsafe when fault
detector triggers

 Possible ways to improve:
 Physically isolate from system to avoid recertification

 Design systems to explicitly permit bounded-time failure
detection

ectrical & Computer
) ENGINEERINE

Carnegie Mellon

Other Runtime Verification

e Your list of favorite runtime technigues goes
here...

 Mechanical interlocks and safety monitors

e Historically useful, but often too simple to permit
optimized control behaviors

e My favorite Is: External runtime monitoring

ectrical & Computer
) ENGINEERIN

External Safety Monitor

e |dea: External runtime monitor
e Formal (or semi-formal) safety specification
e System presents state information
e Monitor checks sate against safety spec at run
time

 We’'re going to sweep recovery under the rug

 For now, concentrating on a real time failure
detector — e.g. to trigger emergency shutdown

 For example, to provide fall-stop subsystem
behaviors

ectrical & Computer
) ENGINEERINE

Carnegie Mellon

Run-Time Safety Monitor

 How do you know this unmanned ground vehicle is safe?

 Ensure speed limit not violated
 Ensure it stays stopped when commanded to stop
 But, autonomy software has been modified at 3 AM on demo day(!)

e Solution: independent safety monitor
 This is the one thing you can count on _—

TARGET GVW: 8,500 kg
TARGET SPEED: 80 km/hr

Approved for Public Release. TACOM Case #20247 Date: 07 OCT 2009

Carnegie Mellon

Safety Monitor Approach

Dedicated, trusted hardware to monitor behaviors

e |nvariants to describe “safe” behaviors
 For example: vehicle speed < speed limit
e State machines to account for system operating modes
« Different invariants are active in different modes (e.g., “stop” vs.
“run”)
 Emergency shutdown sequencing if any invariant is false

[ectrical & Computer
) ENGINEERING 18

Approved for Public Release. TACOM Case #20247 Date: 07 OCT 2009

A"”E’m@ APD Safety System

Objective: Enforce and control safe standoff distance between APD
and nearby personnel.

Approach:

+Provide fail-safe braking mechanisms with well-modeled
stopping distance.

Incorporate Safety Monitor for redundant, high-reliability means
of restraining vehicle speed.

MEDIUM
+ldentify and mitigate risks that could lead to failures of braking SLOW
and speed-limiting.
Techniques:

+Identifying hazards that lead to safety mishaps.

*Modeling of correlation between latent hazards with

rich instrumentation. Reliable speed limiting
allows safe standoff

+Firewalling safety-criticality to a subset of vehicle distances 1o be decreased
components.

*Developing & testing fault-resistant software for Safety Monitor Master State Char
Speed Ilm'tlng aitForReset

onReset

+VV&V testing traced to safety requirements.

INITIALIZE InvariantFail
= (T unsble to servo stop the vehice &
(] Loss of stapping abaey — RunTimeDiagsFail || InputFailure InitPass
’_LUn»ItleSTO"I?\tvehldt #
({ vehicle collision 1+, (| Loss of speed-imit abitny LM 28 pendit ¢ nitF ail SAFE [DinvariantsOk
TAPD mishaps - S 58,10 iR Pt Pk 8
':I:‘wmmm1 N N RoTa N e RunTimeDiagsFail || InputFailure
{ J Unexpected vehicke motion while in MSTOP .
Injury during maintenance
Careful analysis of mishaps Safety Monitor ensures that safety
drives safety system design invariants are maintained

-N. WARFIGHTER FOCUSED.

A PPROVED FOR PUBLIC RELEA SE, TA COM CASE #20094, DATE: 17 AUG 2008

©

Automotive Prototype

Laptop based monitor
« Log data for offline monitoring

 Run-time monitor with alert
e Can trigger commands

e OBD-Il and UDP networks

Watching system level properties
e Not monitoring individual subsystems

Electrical & Computer

ENGINEERIN

Carnegie Mellon

Carnegie Mellon

Prototype Safety Specification

e |nvariants

— Syntax based on bounded real-time linear
temporal logic (“Metric Temporal Logic”)

« Modes

— State machines

— Hold contextual system state
 Virtual Inputs

— Abstraction to simplify policy

ectrical & Computer
) ENGINEERINE

Carnegie Mellon

Generic External Runtime Monitor

CONFIG. SENSOR/

COMPILER NETWORK

t INPUTS

I afety Configuration CONFIG HISTDRY
(NH.fARlANTSD VIRTUAL INFO BUFFERS

INVARIANT SYSTEM
PROCESSING MODE
ENGINE TRACKER

INPUTS
J(MODE MODELS)\conFia,

Safety Monitor Module

SAFETY SAFETY
ACTUATOR MONITOR
OUTPUTS LOGS

Electrical & Computer 22

{ ENGNEERINE

Simplified Invariant Language

rule ::= G -> P

G ::= expression

P ::= expression | temp_op expression

expression ::= extended_java

temp_op ::= [timestep, timestep] | <timestep, timestep>
timestep ::= integer

Figure 2: Current Prototype Specification language

Pattern Name | Bounded A triggers B
Description If A occurs then B must occur within ¢ time of A
Logic A— Qo B
ASCII A —> <0,t> B

Figure 3: Example Pattern for Building Safety Specifications

ectrical & Computer
) ENGINEERINE

The Good Parts

e Can get (semi-)formal “proofs” of test runs
 Even If a fault in the system Is present

 Don’t need to build a system model
 The vehicle itself is the “model”
* “Free” modeling of implementation defects

e Minimally intrusive
o Separate test box doesn’t affect system

« If monitor provides safe shutdown, don’t need to
recertify rest of system after a change

« |If monitor Is test oracle, don’'t need to change

ectrical & Computer
) ENGINEERIN

The Challenging Parts

 Ensuring coverage
« Still need to fault inject during testing

 How do you know the safety spec is right?
 But you have to know that regardless...

« How do you know you can see sufficient

Internal state?
e For now this has worked out well, but need more
experience to understand this

ectrical & Computer
) ENGINEERIN

What We’'ve Learned About Time

 Need simple temporal approach

 Simple MTL (represents a few cycles of time)
 Need “always” over a bounded time
* Need “eventually” over a bounded time
« Everything else is linear; state machines help a lot

 Need to look at time a little differently

o “Pasttime” instead of future time for monitoring
o Safety kernel would require looking ahead a bit

 What does “eventually” mean at run time?

 Need to compress and bound history to avoid
keeping all data since system was turned on

ectrical & Computer
) ENGINEERINE

Other Things We’'ve Learned

Embedded systems are highly modal
« Mode dramatically affects what “safe” means

 QOur approach: use state machines
* Need to infer system modes based on outputs
» Also use to compress system history

Need to consider reliability of sensor info
e Our approach: minimal redundant sensors that do sanity
checks on primary sensors

Designers are generally allergic to special symbols

 But, when you find things in a real system, they pay
attention!

ectrical & Computer
) ENGINEERINE

