
External Runtime Monitoring
for Critical Embedded Systems

1

Phil Koopman, CMU
Aaron Kane, CMU ECE

Mike Wagner, CMU NREC

(Research Funding from General Motors)

Overview
• Goal: Assure critical properties met

• Especially cost-sensitive, adaptive systems
• Large deployed fleets; everyday products

(e.g., self-driving cars)
• How can you demonstrate that they are met?

• Discussion of available building blocks
• Testing, formal methods, runtime verification

• Our current area of work:
• External runtime monitors – an attempt to go for

cross-area low-hanging fruit

Problem Statement
• How do you make sure “robots” are safe?

• Especially including autonomous vehicles
• (Big ideas likely apply to all embedded systems)

• Need to take into account:
• Significant cost, time-to-market constraints
• Continual changes to software code base
• Increasing complexity
• Likely gaps in/lack of rigorous design artifacts

• Reality check: They’re going to be built with us or
without us. How can our community be relevant?

Approach: Testing
• Strategy: Test it into submission

• Find the bugs; test some more; system-level testing
• In industry, this is the default strategy

• Strengths:
• There’s nothing like the real thing
• Historically works OK on non-software systems

• Weaknesses:
• Need to test at least 3x MTBF – problem when MTBF is comparable

to total fleet exposure
• Need to recertify after even one line of code has been changed
• Hard to test failure modes (e.g., need fault injection)

• Possible way to improve:
• Use testing to validate quality rather than create quality

Peer Review
• Strategy: Inspection of design artifacts
• Strengths:

• Expect to find 50% of the bugs for 10% of budget

• Weaknesses:
• Management bias to create functionality, not do reviews
• Usually better at unit level than system level
• Informal; monitoring bug find rate helps assess effectiveness
• Many designers are bad at imagining failure modes in a review

• Possible way to improve:
• Can we say something stronger about review coverage?
• Better techniques for system integration review

Static Analysis
• Strategy: Lint-like tools to analyze source code
• Strengths:

• Helps find implementation problems
• (Dynamic analysis may help too, e.g., bounds checking)

• Weaknesses:
• Only good for narrow implementation problems
• False positives unless adopt a lint-friendly coding style

• Possible way to improve:
• Higher level static analysis (e.g., at architecture level) –

some work in this area

Your List of Favorite Informal
Analysis Techniques Goes Here

• Robustness testing & fault injection
• …

Formal Representations
• Strategy: Mathematically rigorous expression of

specification and a model of system
• Strengths:

• Mathematically rigorous; helps think about system

• Weaknesses:
• Assumptions necessary in proofs may be significant
• Need to ensure specs & system model are correct
• Scalability problems to cars with 1M+ lines of code
• Temporal aspects can be challenging

• Possible way to improve:
• Improve accessibility to everyday engineers;

“light weight” approaches to temporal properties

An Aside on Specifications
• Multiple representations of a system:

• System specification: what it does
• System model: how it is built

• But, it is usually unnecessary to prove the
system is perfect
• Really, what you care about is only the critical

aspects of system behavior
• Want a “safety specification”

• (Or “critical property specification”)
• In practice, subset of system spec doesn’t work

– Need an entirely different safety spec

Model Checking
• Strategy: Prove properties about formal

representations, e.g. via exhaustive search
• Strengths:

• Mathematically rigorous; provides counter-examples
• Impressive gains in scalability using SAT solvers

• Weaknesses:
• Need to know what questions to ask (“safety spec”)
• Same general pro/con as formal representations

• Possible way to improve:
• Biggest challenges (IMHO): adaptive systems and

modeling faulty system behavior

Other Formal Analysis
Your list of favorite formal static techniques
goes here…
• Design synthesis from formal specification

• Model-based design
• …

Acceptance Test Style Techniques
• Strategy: Check for correctness at run time
• Strengths:

• System being tested is the real system – warts and all
• “Checking” can often be simpler than “doing”

• Weaknesses:
• Need to know what properties to check (“safety spec”)
• Doesn’t “prove” anything

• (Not strictly true… proves that the test’s behavior trace is OK)

• Possible way to improve:
• Formalize the acceptance tests
• Architectural patterns to separate doing from checking

Safety Kernels
• Strategy: Safety kernel blocks unsafe actions

(“safety gate” architecture pattern)
• Strengths:

• Works on the real system, not just a model
• Operating system provides some isolation

• Weaknesses:
• Same as acceptance tests
• Must predict effect of action on system to work
• Need to recertify kernel? (How good is isolation?)

• Possible way to improve:
• Stronger isolation to avoid recertification

Runtime Monitoring
• Strategy: Trigger a flag when system misbehaves at

runtime (“safety monitor” architecture pattern)
• Strengths:

• Similar to safety kernel
• Doesn’t need to predict; just react

• Weaknesses:
• Technically, system is momentarily unsafe when fault

detector triggers

• Possible ways to improve:
• Physically isolate from system to avoid recertification
• Design systems to explicitly permit bounded-time failure

detection

Other Runtime Verification
• Your list of favorite runtime techniques goes

here…
• Mechanical interlocks and safety monitors

• Historically useful, but often too simple to permit
optimized control behaviors

• My favorite is: External runtime monitoring

External Safety Monitor
• Idea: External runtime monitor

• Formal (or semi-formal) safety specification
• System presents state information
• Monitor checks sate against safety spec at run

time

• We’re going to sweep recovery under the rug
• For now, concentrating on a real time failure

detector – e.g. to trigger emergency shutdown
• For example, to provide fail-stop subsystem

behaviors

17

Run-Time Safety Monitor
• How do you know this unmanned ground vehicle is safe?

• Ensure speed limit not violated
• Ensure it stays stopped when commanded to stop
• But, autonomy software has been modified at 3 AM on demo day(!)

• Solution: independent safety monitor
• This is the one thing you can count on

TARGET GVW: 8,500 kg
TARGET SPEED: 80 km/hr
Approved for Public Release. TACOM Case #20247 Date: 07 OCT 2009

18

Safety Monitor Approach
• Dedicated, trusted hardware to monitor behaviors

• Invariants to describe “safe” behaviors
• For example: vehicle speed < speed limit

• State machines to account for system operating modes
• Different invariants are active in different modes (e.g., “stop” vs.

“run”)
• Emergency shutdown sequencing if any invariant is false

Based on our safety case, NREC secured a safety release from the U.S. Army’s Developmental Test
Center allowing APD to operate alongside soldiers during a month-long field experiment.

Approved for Public Release. TACOM Case #20247 Date: 07 OCT 2009

Automotive Prototype
• Laptop based monitor

• Log data for offline monitoring
• Run-time monitor with alert

• Can trigger commands
• OBD-II and UDP networks

• Watching system level properties
• Not monitoring individual subsystems

Prototype Safety Specification
• Invariants

– Syntax based on bounded real-time linear
temporal logic (“Metric Temporal Logic”)

• Modes
– State machines
– Hold contextual system state

• Virtual Inputs
– Abstraction to simplify policy

Generic External Runtime Monitor

22

Simplified Invariant Language

The Good Parts
• Can get (semi-)formal “proofs” of test runs

• Even if a fault in the system is present
• Don’t need to build a system model

• The vehicle itself is the “model”
• “Free” modeling of implementation defects

• Minimally intrusive
• Separate test box doesn’t affect system
• If monitor provides safe shutdown, don’t need to

recertify rest of system after a change
• If monitor is test oracle, don’t need to change

The Challenging Parts
• Ensuring coverage

• Still need to fault inject during testing
• How do you know the safety spec is right?

• But you have to know that regardless…
• How do you know you can see sufficient

internal state?
• For now this has worked out well, but need more

experience to understand this

What We’ve Learned About Time
• Need simple temporal approach

• Simple MTL (represents a few cycles of time)
• Need “always” over a bounded time
• Need “eventually” over a bounded time
• Everything else is linear; state machines help a lot

• Need to look at time a little differently
• “Past time” instead of future time for monitoring

• Safety kernel would require looking ahead a bit
• What does “eventually” mean at run time?
• Need to compress and bound history to avoid

keeping all data since system was turned on

Other Things We’ve Learned
• Embedded systems are highly modal

• Mode dramatically affects what “safe” means
• Our approach: use state machines

• Need to infer system modes based on outputs
• Also use to compress system history

• Need to consider reliability of sensor info
• Our approach: minimal redundant sensors that do sanity

checks on primary sensors

• Designers are generally allergic to special symbols
• But, when you find things in a real system, they pay

attention!

