
Computer Science and Engineering

The University of Michigan

Measures of System Quality:
A 50-Year Evolution

 John F. Meyer

jfm@umich.edu

IFIP WG 10.4
64th Meeting

Visegrad, Hungary
June 27-30,2013

Computer Science and Engineering

The University of Michigan

Outline

 Scope

 When – Past half century

 What

• Measures of system quality

• Fundamental modeling results

 Evolution

 1960s – Performance, reliability

 1970s – Degradable performance, performability

 1980s – Dependability, service quality (QoS)

 1990s – Other Xability, QoX measures, security

 2000s – Subjective quality measures, resilience

Computer Science and Engineering

The University of Michigan

Scope

 Measures of System Quality

 Quality:
 A generic term with various interpretations

 System:
 An IT system and its use environment

 Measures:
 Probabilistic

 Evaluation based on

• system models (analytic, simulation, hybrid)

• actual systems

• combination of the two

Computer Science and Engineering

The University of Michigan

A system and its use environment

 Let (S, E) denote the total system in question, consisting of

an object system S and its use environment E.

 What S is or does in E can then be quantified via one or

more quality measures.

S

E

Computer Science and Engineering

The University of Michigan

More precisely …
 Generally, a quality measure can be viewed as a

random variable YT , where

 T is the use period during which the system is utilized or
observed

• syntactically an interval of some discrete or continuous

time base I.

• can range from a single instant T = {t } to a period that’s

unbounded from above (long-run use)

 YT takes values in a set of quality outcomes

 Probabilistic nature ofYT is given by

 partial descriptions: mean, higher order moments, selected

probabilities

 a full description: pdf (if it exists), PDF

Computer Science and Engineering

The University of Michigan

Not just for analysis

 Although this abstraction appears to be specific to

analytic models, it applies as well to

 simulation models

 actual systems

 In these cases, one obtains estimates of the probabilistic

nature of YT , e.g., estimates of its

 mean (expectation) E[YT]

 probabilities of the form P [YT ≤ y] or P [YT = y] (if defined)

Computer Science and Engineering

The University of Michigan

“What” versus “how”
 When discussing quality measures, it is helpful to

distinguish
 what property of S is being measured by YT
from

 how YT is formulated and evaluated (in terms of the dynamics of
S and E).

 What: The name given to a measure typically suggests
its meaning.
 Generally, this is an interpretation of the values of YT (outcomes

or probabilities thereof)

 This is therefore a semantic issue, where specific meanings can
vary according to the application.

 How: Described mainly by syntactic constructions;
functions, equations, algorithms, distributions, etc.

Computer Science and Engineering

The University of Michigan

Measure types

 Evaluations of computer and communication systems in

the 1960s were principally concerned with two types of

quality measures:

 Reliability: What a system is

 Measures of the structural integrity of S in the presence of faults

(independent of E).

 Related to measures such as (structure-based) availability.

 Performance: What a system does

 Measures of the effectiveness or efficiency of S in E, assuming

both are fault-free.

Computer Science and Engineering

The University of Michigan

Model assumptions: 1960s
 Reliability models (physical faults)

 Structure of S (the representation thereof) is probabilistic

• Dynamics are typically due to

• rates of fault occurrences

• durations of recovery actions

 E is fixed (has a single state, representing constant active
use of S)

 Performance models
 Structure of S is fixed

 E is probabilistic

• Dynamics are typically due to

• frequencies and durations of user demands
(service requests)

• workload imposed during active use

Computer Science and Engineering

The University of Michigan

Structure-based measures
 Traditional structure-based measures of system

reliability/availability convey a binary-valued view of a

system's ability to serve its users:

 Operational or up, meaning “capacity to serve"

 Otherwise the system is non-operational or down

 Note that this dichotomy doesn’t necessarily coincide with

what is experienced by a user in E (either a human or

some other system).

 Indeed, a structure-based measure reflects what a user

might experience only when S is constantly used by E.

Computer Science and Engineering

The University of Michigan

Basic reliability/availability measures

 Relative to a continuous time base I = ℝ≥0, let

 X (s) = 1 if S is up at time s ; 0 else

 T = [0, t], t > 0

 and consider the quality measure

 YT = the amount of time during T that S is operational

 Then YT = 𝑋 𝑠 𝑑𝑠
𝑡

0

 In turn, YT yields some other familiar quality measures:

 Reliability (during T ; down = failure): P [YT = t]

 Interval availability:
1

t YT

 Limiting (steady-state) availability: lim
𝑡 →∞

1

t YT

Computer Science and Engineering

The University of Michigan

Basic performance measures
 Relative to a continuous time base I = ℝ≥0, let

 A(s) = # of job arrivals (service requests) from E during [0, s]

 L(s) = # of jobs in S at time s (L(0) = 0; no upper bound on L(s))

 Then
 C(s) = # of job completions (to E) during [0, s] = A(s) – L(s)

 Accordingly, the throughput of S during T (T = [0, t], t > 0)
is the quality measure

 YT = 𝐶(t)/t (job completion rate)

 In the limit (which exists under appropriate conditions), the

steady-state throughput is given by

 lim
𝑡 →∞

YT = lim
𝑡 →∞

(A(t) – L(t))/t = lim
𝑡 →∞

A(t)/t - lim
𝑡 →∞

𝐿(t)/t = lim
𝑡 →∞

A(t)/t,

i.e., it coincides with the steady-state arrival rate.

Computer Science and Engineering

The University of Michigan

Basic performance measures (cont’d)

 Some further measures of E and S:

 Let

 αT = A(t) /t = job arrival rate from E during T

 LT =
1

𝑡
 𝐿 𝑠 𝑑𝑠
𝑡

0
 = time-average # of jobs in S during T

 WT =
1

A(t) 𝐿 𝑠 𝑑𝑠
𝑡

0
 = average time a job spends in S during T

 Then with a “little” manipulation, we have

 LT = αT WT

 which, in terms of the limiting values (when they exist),

 l = lim
𝑡 →∞

𝐿T α = lim
𝑡 →∞

αT w = lim
𝑡 →∞

WT

gives l = α w (Little’s Theorem, 1961).

Computer Science and Engineering

The University of Michigan

Fundamental results: 1960s

 Reliability

 W.G. Bouricius, W.C. Carter and P.R. Schneider, “Reliability

Modeling Techniques for Self-Repairing Computer Systems,” in

Proceedings of the 24th ACM National Conference, pp. 295-309,

ACM, 1969.

• Need to consider bounded use periods (missions) T = [0, t]

• MTTF as t → ∞ is a misleading measure for highly reliable

systems (even when t is large)

• Concept of coverage c

• Sensitivity of reliability measures to values of c

Computer Science and Engineering

The University of Michigan

Fundamental results: 1960s (cont’d)

 Performance

 G. Estrin and L. Kleinrock, "Measures, Models and

Measurements for Time-Shared Computer Utilities," in

Proceedings of the 22nd ACM National Conference, pp. 85–

96, ACM, 1967

• Utility of queueing models for computer performance

evaluation

• Led to two classic books on Queueing Systems

authored by Kleinrock and published in the mid-1970s:

• Vol. 1: Theory

• Vol. 2: Computer Applications

Computer Science and Engineering

The University of Michigan

Be aware of the user: 1970s

 Appropriateness of an up-down, user-independent view of

system reliability began to be questioned in the 1970s.

 This was due to developments in several areas:

 Degradable computing systems

 Computation-based measures

 Studies examining the effects of workload on hardware reliability

 Software reliability, software fault-tolerance

 Concerns with development faults in software were

perhaps the most influential.

 A software system S , no matter how faulty, requires a non-

trivial use environment E in order to fail.

Computer Science and Engineering

The University of Michigan

 User-oriented measures

 Accordingly, more general types of quality measures

began to emerge (mid-70s, early 80s), placing

greater emphasis on how delivered services are

affected by internal and external faults.

 Performability: Measures of a system’s ability to perform

(serve its users) throughout a specified utilization period.

 Dependability: Measures of a system’s trustworthiness

with respect to delivery of a specified service.

 QoS: The “collective effect” of service performances

(including dependability) which determine the degree of

satisfaction of a user of the service (telecom ITU-T

Recommendation E.800).

Computer Science and Engineering

The University of Michigan

“Does” trumps “is”: 1980s

 As a consequence of the concept and terminology efforts

of this Working Group led by Laprie in the early 80s:

 Summer 1981 WG meeting devoted to this subject

 Panel of terminology papers at FTCS-12

 Laprie paper presented at FTCS-15

a distinguishing feature of dependability was its

treatment of the notion of “failure.”

 Instead of it being a loss of capacity to serve (per

traditional measures of reliability and availability), a

(service) failure is identified with a transition from correct

to incorrect service delivery.

Computer Science and Engineering

The University of Michigan

Why was this important?

 Dissemination of this view during the 1980s and early 90s

produced a major change in how various dependability

attributes (particularly reliability and availability) were

measured and evaluated.

 It anticipated the emergence of user-centric applications.
 Personal computing

 Embedded computers in home appliances, entertainment
systems, cars, trains, aircraft, …

 Home networks, enterprise networks, ATC systems, military C2
systems

 World-wide communication and information sharing

Computer Science and Engineering

The University of Michigan

The use environment E

 When quantifying system quality from a user’s
perspective, two important aspects of E need to be
considered:

 E  S : User demands, other influences external to S

 S  E : Services delivered by S

S

E

E  S S  E

Computer Science and Engineering

The University of Michigan

Some examples of E  S

 User demands

 Workload (computer systems)

 Call, message, and connection traffic (communication networks)

 External faults

 Radiation

 Electromagnetic interference

 Cyber attacks

 Unanticipated environmental changes of the type

tolerated by resilient systems

 Generally, the dynamics of the above can be described

objectively in technical terms.

Computer Science and Engineering

The University of Michigan

 S  E

 This is mainly where system quality is observed by

users.

 With respect to measure types that account for

effects of faults originating in both S and E :
 Dependability: Quality of S to the extent that services are

delivered properly to E (failures occurs when they are not).

 Performability: Quality of services delivered throughout a

specified use period T (perhaps unbounded).

 QoS: The “collective effect” of service performances

(including dependability) which determine the degree of

satisfaction of a user of the service.

Computer Science and Engineering

The University of Michigan

Measures of security: 1990s

 What is and is not common between dependability and

security was first discussed seriously at a joint D-S WG

(10.4, 11.3) workshop held at the Grand Canyon, AZ in

1991.

 This mutual interest has continued since then, so what

about (quantitative, probabilistic) quality measures in this

regard?

Computer Science and Engineering

The University of Michigan

Confidentiality

 Relative to the well-known security “trifecta” (CIA Triad)

• Confidentiality

• Integrity

• Availability

 measures of I and A have been understood and used by

the dependability community for many years.

 So what remains w.r.t. the Triad are measures of

confidentiality.

Computer Science and Engineering

The University of Michigan

Confidentiality measures

 To illustrate what such a measure might look like

according to the ground rules of this review (it is

quantitative and probabilistic), let

 BoC denote a breach of confidentiality (where a BOC can be any

one of several events that constitute unauthorized access to or

disclosure of confidential information in S).

 Relative to a continuous time base I = ℝ≥0, let
 B (s) = # of BoC-occurrences in S during [0, s].

 Then for T = [0, t], t > 0

 YT = B (t) = # of BoC-occurrences in S during T .

 What’s missing in this picture?

Computer Science and Engineering

The University of Michigan

User-perceived quality: 2000s
 Although the wording of the ITU-T QoS definition

suggests that it is somewhat subjective, e.g., phrases
such as
 “collective effect”

 “degree of satisfaction”

 practical use of this term has not been.

 Consequently, more explicitly subjective concepts of
quality emerged during the 2000s.
 Quality of experience (QoE):

• The overall acceptability of an application or service, as
perceived subjectively by the end-user (ITU-T Study Group
12, Geneva, January 2007)

 Quality of perception (QoP):

• End-user perception (as in QoE) along with an
understanding and assimilation of what is perceived.

Computer Science and Engineering

The University of Michigan

Resilience
 During the past decade, system resilience has received

increased attention in several system domains.
 Internet

• IRIS (Infrastructure for Resilient Internet Systems)

 Information system technology

• ReSIST (Resilience for Survivability in IST)

 High Performance Computing (HPC)

• Resilience in HPC

 Safety systems

• Resilience engineering

 Industrial, ecological, and social systems

• Ohio State University’s Center for Resilience

 Defense systems

• US DoD initiative: Engineered Resilient Systems

Computer Science and Engineering

The University of Michigan

ReSIST definition
 Quoting from Jean-Claude Laprie’s 2008 DSN paper

(Alaska):

With such ubiquitous systems, what is at stake is to maintain

dependability, i.e., the ability to deliver service that can justifiably

be trusted in spite of continuous changes. Our definition of

resilience is then:

 The persistence of service delivery that can be

 justifiably be trusted, when facing changes.

The definition given above builds on the initial definition of

dependability, which emphasizes justifiably trusted service.

Computer Science and Engineering

The University of Michigan

Shorthand versions

 ReSIST:

 Def.: Resilience is the persistence of dependability when facing

changes.

 Extending the definition to account for properties such as

degradable performance:

 Def.: Resilience is the persistence of performability when facing

changes.

Computer Science and Engineering

The University of Michigan

Resilience measures

 Per the shorthand definitions just cited, resilience

measures are really nothing new.

 For example, given an object system S and use

environment E, one can select a favorite quantitative x-

measure (x = dependability or performability) and then

specify what is meant by persistence.

 For example, if “to persist" is “to exist" then the

resulting resilience measure coincides with the

underlying x-measure, except it can now reflect effects

of changes (including faults).

Computer Science and Engineering

The University of Michigan

Resilience measures (cont’d)

 More restricted interpretations of “persist” correspond to

more specialized measures of resilience.

 For example, suppose “persist” has the stronger meaning

of “holding on” to some acceptable level of ability to serve

during the use period T , e.g.,

 stay at or above some lower bound b on the mean service quality

(MSQ) throughout T

 Resilience is then quantified by the performability

measure:

 YT = fraction of T wherein MSQ  b.

Computer Science and Engineering

The University of Michigan

Needs looking ahead

 More refined dependability/performability measures for

contemporary systems ranging from

 Embedded

 to

 Ubiquitous (cloud is a component)

 Measures of system security whose probabilistic nature

can be evaluated by practical means based on

 Models

 7Experiments

 Field data

