

Recent Advances in Cloud Computing Dependability

Paulo Veríssimo

pjv@di.fc.ul.pt http://www.di.fc.ul.pt/~pjv

joint work with: Alysson Bessani, Miguel Correia, Pedro Costa, Bernhard Kauer, Marcelo Pasin, Paulo Sousa

Univ. de Lisboa, Faculdade de Ciências (FCUL), LaSIGE, Portugal,

Trustworthy Clouds Privacy and Resilience for Internet-scale Critical Infrastructure

Moving to Clouds

- Data are moving to the cloud
- Main reason: costs (pay-per-use model)
- > Still hesitation for critical applications (e.g., smart energy grids, health), but it's a matter of time...
- What is the risk of moving data to the cloud?

Cloudy weather ... (many worries of cloud users)

Source: IDC Enterprise Panel, August 2008 n=244

5

Cloudy weather ...

Source CISCO, 2012

Critical applications on the cloud?

- ▶ is depending on one cloud (or provider thereof) enough to build trust?
- > E.g., privacy- and security-critical data storage
 - Medical records
 - Company financial data

TClouds big challenge

➤ How to allow a swift migration path from current commodity insecure clouds to future natively resilient (secure and dependable) and cost-effective clouds?

Alternatives for cloud resilience

- > (i) Approaches confined to single cloud provision.
- (ii) Proprietary trusted or accredited clouds may implement specific laaS or PaaS approaches to achieving resilience.
- (iii) Federated cloud environments, which require alliance of the involved providers.
- ➤ (iv) Cloud-of-clouds environments, which take advantage of multiple independent cloud provider offers.

DSN 2012 - BoF Cloud Computing Resilience in Practice: Harder than it Looks

18/01/2013

a

Trusted-Trustworthy Clouds

Options (i), (ii), (iii):

 1) Rely on improved cloud infrastructure by single or federated cloud providers

CON: dependence on actual provider(s) trustworthiness (single point of failure, lock-in, collusion)

Trusted-Trustworthy Clouds

Option (iv):

cloud-of-clouds – use multi-cloud environments independently

PRO: be your own master w.r.t. trust

Some solutions in the cloud-of-clouds world

DepSky – Dependable and Secure Storage in a Cloud-of-Clouds. A. Bessani, M. Correia, B. Quaresma, F. André, P. Sousa [Eurosys 2011]

Robust data sharing with key-value stores [DSN'12]

M. Vukolić (EURECOM, France), C. Basescu (Vrije Universiteit Amsterdam), C. Cachin, R. Haas, A. Sorniotti (IBM Research Zurich), I. Eyal, I. Zachevsky (Technion)

The TClouds Architecture: Open and Resilient Cloud-of-clouds Comput. P. Verissimo, Alysson Bessani, Marcelo Pasin [DVDV@DSN'12]

TClouds big challenge

- ➤ How to allow a swift migration path from current commodity insecure clouds to future natively resilient (secure and dependable) clouds?
- ➤ How to promote, along and at the end of this road, a diverse and open ecosystem?
- How about a coherent architecture, with modular and reusable artefacts?

Status-quo

- Existing Technologies:
- "cloudified" scenario has availability + security needs that cannot be met by application layer alone.
- proprietary approaches to security can create exclusion and make interoperation difficult and expensive
- single-cloud solutions, even if open, will not address high resilience objectives, since they are a single point of failure
- A solution resilient cloud-ofclouds infrastructure:
- automated computing resilience against attacks and accidents in complement or in addition to commodity clouds

Applications using (untrusted) Cloud
Services

TClouds
Resilient Cloud-of-clouds
Infrastructure

Basic Multi-Cloud Untrusted Services
CLOUD A CLOUD N
Bare Resources

TClouds No. 257243 Trustworthy Clouds -Privacy and Resilience for Internet-scale Critical Infrastructure

18/01/2013

22

Overview of the TClouds CoC architecture

(interfaces)

•The TClouds architecture thus provides applications with a wealth of interfaces to produce incremental resilience solutions with single or multiple clouds:

• TClouds Trusted Platform services (T-PaaS) on top of the middleware layer

 TClouds Trusted Infrastructure services (T-laaS) from within the middleware layer

Infrastructure services (laaS) from available commodity untrusted clouds

Applications using e.g. Trusted Web and Privacy Services

TClouds design approaches

- The TClouds architecture allows several solutions for resilience based on Trusted Platform or Infrastructure services (T-PaaS, T-laaS), with essentially a re-use of the same basic algorithms and mechanisms:
 - T-PaaS, T-laaS implemented with a TClouds resilient middleware layer on top of commodity clouds
 - Native TClouds where resilience may also be built from scratch in the bare resources (e.g. with local low-level VM FIT mechanisms)
 - TClouds middleware is by nature cloud-ofclouds, and **T-PaaS**, **T-laaS** can be implemented with any mix of native TClouds, "T-cloudified" commodity clouds with local resilience layer, and commodity clouds

「Clouds No. 257243 Frustworthy Clouds -Privacy and Resilience for Internet-scale Critical Infrastructure

18/01/2013

٠.

TClouds design approaches

- The TClouds architecture allows several solutions for resilience based on Trusted Platform or Infrastructure services (T-PaaS, T-laaS), with essentially a re-use of the same basic algorithms and mechanisms:
 - T-PaaS, T-laaS implemented with a TClouds resilient middleware layer on top of commodity clouds
 - Native TClouds where resilience may also be built from scratch in the bare resources (e.g. with local low-level VM FIT mechanisms)
 - TClouds middleware is by nature cloud-ofclouds, and **T-PaaS**, **T-laaS** can be implemented with any mix of native TClouds, "T-cloudified" commodity clouds with local resilience layer, and commodity clouds

TClouds design approaches

- The TClouds architecture allows several solutions for resilience based on Trusted Platform or Infrastructure services (T-PaaS, T-laaS), with essentially a re-use of the same basic algorithms and mechanisms:
 - T-PaaS, T-laaS implemented with a TClouds resilient middleware layer on top of commodity clouds
 - Native TClouds where resilience may also be built from scratch in the bare resources (e.g. with local low-level VM FIT mechanisms)
 - TClouds middleware is by nature cloud-ofclouds, and T-PaaS, T-laaS can be implemented with any mix of native TClouds, "T-cloudified" commodity clouds with local resilience layer, and commodity clouds

Trusted Platform Services

Trusted Infr: structure Services

Multi-Cloud IaaS Interface

Basic Multi-Cloud Untrusted Services

CLOUD A

Bare Resources

TClouds No. 257243 Trustworthy Clouds -Privacy and Resilience for Internet-scale Critical Infrastructure

18/01/2013

27

TClouds design approaches

(Native TClouds with resilience built in the bare resources)

Recursive Virtual Machines for Advanced Security Mechanisms

Bernhard Kauer, Paulo Veríssimo, Alysson Bessani

University of Lisbon, Faculty of Sciences LaSIGE

Virtual Machines & Security

- Virtualization is a key enabler of the cloud computing business model
- Leveraging virtualization for security:
 - Protect kernel code or application data
 - Intrusion detection
 - Trusted execution environments
 - Efficient SWIFIT (software implemented fault and intrusion tolerance)
 - Providing protection and confinement for defense-in-depth architectures

Nested Virtualization

- Nested VM: one virtual machine running inside of a VM (or, an hypervisor managing a VM instead of hardware directly)
- Nested VMs generalization:
 recursive virtual machines

Web server

Related Work

- Recursive virtualization [Popek and Goldberg 1974, Belpire and Hsu 1975]
- Nesting two VMs: AMD [Graf and Roedel 2009] and Intel VMX (Turtles) [Yehuda et al., 2010]
- > Exponential overhead: more than two VMs is a killer
 - Hardware extensions to reduce this overhead [Poon and Moon 2010]
 - Fluke [Ford et al. 1996] is similar, but they provide only system call virtualization

Exponential Overhead of Nested Virtualization

- > Main reason: trap-and-emulate
 - Parent VMs trap the virtualization instructions executed by children VMs and emulate them

Virtualization instructions usually executed by the hypervisor to handle a trap

AMD SVM	Intel VT
clgi	vmread(exit-reason)
<pre>vmload(child-state)</pre>	vmread(exit-qualification)
vmrun(child)	vmread(instruction-pointer)
vmsave(child-state)	vmread(instruction-len)
<pre>vmload(parent-state)</pre>	vmwrite(instruction-pointer)
stgi	vmresume(child)

6 instructions per event for the parent VM! 36 instructions for the grand-parent VM!

Practical Limits of Nested Virtualization (maximum allowed number of nested VMs)

Branching	Interrupts per Second				
Factor	1	10	100	1000	
2	22	19	15	12	
4	11	10	8	6	
6	9	8	6	5	
8	8	7	5	4	
10	7	6	5	4	

- > Slow but live nested virtual machines:
 - One interrupt per second: 9 NVMs
 - 1000 interrupts per second: 5 NVMs

Our Contribution

- > Efficient implementation of recursive virtual machines
- ➤ A hypervisor architecture that allows VMs to be stacked without the expected exponential performance overhead
- Some ideas for recursive VM use to build advanced security mechanisms

Core Idea

Instead of repeating the support for nested VMs in every layer, we just implement recursive VMs in the root hypervisor

I/O Virtualization

- Root hypervisor also assigns virtual devices
 - Every physical device is bridged only in the root VM – linear overhead

Advanced Security Mechanisms

> Thin security layers

Different hypervisors can improve different security aspects of legacy OSs

Defense in depth

In-depth barriers of several kinds, such as firewall-like filters, wrappers, failure and intrusion detectors, etc.

> Intrusion and fault tolerance

Decompose trusted components (for efficient BFT) in several micro-hypervisor layers

TClouds design approaches

(resilient middleware layer on top of commodity clouds)

TClouds No. 257243 Trustworthy Clouds -Privacy and Resilience for Internet-scale Critical Infrastructure

18/01/2013

49

A concrete proof-of-concept result with the TClouds architecture:

DepSky – Dependable and Secure Storage in a

Cloud-of-Clouds

[Bessani et al., ACM Sigops Eurosys 2011]

TClouds No. 257243
Trustworthy Clouds Privacy and Resilience for Internet-scale Critical Infrastructure

DepSky Design Assumptions

1. No trust on individual cloud providers

Distributed trust is built by independent mechanisms over commodity multi-cloud environments

2. Use storage clouds as they are

No server-side code needed on the cloud

3. Data is updatable

Quorum replication protocols for consistency

System Model

- Asynchronous distributed system
- > Faults
 - Clouds can be unavailable, cerrunt
 Byzantine faults
 - Readers can do whatever they wan
 - Writers can crash and recover
- $\rightarrow n = 3f + 1$ clouds to tolerate f faults
- Symmetric and asymmetric cryptography
- Data model: single-writer multiple-reader regular register

Availability and Integrity

f-dissemination Byzantine quorum systems [Malkhi & Reiter 1998]

- Read/Write protocols in
 - quorums of 2f+1 servers out-of 3f+1 servers
 - data is self-verifiable (signed)

f=1

Limitations of simple replication (in Byzantine failure scenarios)

Storage Confidentiality, Availability and Efficiency

Combining Erasure Codes, Robust Secret Sharing and Quorums [Krawczyk 1993]

Consistency Proportionality

- The consistency provided by DepSky is the same as the base storage clouds
 - If the weakest consistency cloud provides <u>eventual</u> <u>consistency</u>, DepSky provides <u>eventual consistency</u>
 - If the weakest consistency cloud provides <u>"read your writes"</u>,
 DepSky provides <u>"read your writes"</u>
 - If the weakest consistency cloud provides <u>regular storage</u>,
 DepSky provides <u>regular storage</u>
- > This notion may be useful for other systems

DepSky Evaluation

DepSky Latency (100kb DU)

A (avail.+integrity)
CA (+confidentiality)

DepSky write latency is close to the cloud with the worst latency

DepSky Operation Costs (\$)

Operation	DepSky-CA	Amazon S ₃	Rackspace	Win. Azure	Nirvanix
10K Reads	1.47	1.46	2.15	1.46	1.46
10K Writes	(3.08)	/2 (1.46)	0.78	0.98	2.93

- DepSky oper. Costs (USD) for 1Mb data unity and four clouds
 - Read cost is the same of reading from the less expensive cloud
 - Write cost is the sum of writing 50% of the DU size on each cloud
- DepSky storage cost (1M data unit, w/ confidentiality):
 - 2×(Avg. individual cloud cost per GB/month)

TClouds No. 257243 Trustworthy Clouds -Privacy and Resilience for Internet-scale Critical Infrastructure

18/01/2013

62

DepSky Perceived Availability

Location	Reads Tried	DEPSKY-A	DEPSKY-CA	Amazon S3	Rackspace	Azure	Nirvanix
Brazil	8428	1.0000	0.9998	1.0000	€0.9997	0.9793	€0.9986
US-PA	5113	1.0000	1.0000	0.9998	1.0000	1.0000	0.9880
US-CA	8084	1.0000	1.0000	0.9998	1.0000	1.0000	0.9996
New Zealand	8545	1.0000	1.0000	0.9998	1.0000	0.9542	0.9996
Japan	8392	1.0000	1.0000	0.9997	0.9998	0.9996	0.9997
China	8594	1.0000	1.0000	0.9997	1.0000	0.9994	1.0000
Spain	6550	1.0000	1.0000	1.0000	1.0000	0.9796	€0.9995
UK	7069	1.0000	1.0000	0.9998	1.0000	1.0000	1.0000

- perceived availability of DepSky better than 0,99995
- Apparently, some clouds don't provide the promised 5 or 6 9's of availability
- > Internet availability plays an important role

Paulo Verissimo

http://navigators.di.fc.ul.pt

Thank you!

