
Making Geo-Replicated Systems Fast

when Possible, Consistent if Necessary

Rodrigo Rodrigues

NOVA University of LisbonNOVA University of Lisbon

Joint work with Allen Clement, Johannes Gehrke, Cheng Li,
Daniel Porto and Nuno Preguiça

Max Planck Institute for Software Systems, Cornell, and NOVA U.

IFIP Workshop – January 18, 2013

Higher latency ⇒ Lower revenue

Bing: 2-sec slowdown reduced revenue per user by 4.3%

Consequence: Geo-replication

3

Flip-side of geo-replication

• Geographically disperse replicas are expensive to

synchronize

• Leads to existence of various different levels of geo-

replication: the geo-replication hierarchy

4

The geo-replication hierarchy

• First level: centralized server

• Second level: replicas at distant data centers

• The two levels can co-exist:

– Updates are funneled through primary

– Secondary replicas process read requests– Secondary replicas process read requests

5

The geo-replication hierarchy (cont.)

• Third level: replicas deployed in conventional CDN

infrastructures

• Examples:

– Akamai (static content): 105,000 servers in 78

countriescountries

– Google (mostly youtube)

6

The geo-replication hierarchy (cont.)

• Fourth level: peer-to-peer / hybrid CDNs

• Lower cost of maintaining CDN by leveraging

voluntary contributions of clients

• Example: Akamai netsession

7

The geo-replication hierarchy (cont.)

• Fifth level: replicas on mobile devices

• Local replication overcomes the high latency / low

throughput / weak connectivity

• Example:

8

The geo-replication hierarchy

Master / primary replica

Replicas in geo-diverse

data centers

inexpensive

to synchronize

9

data centers

CDNs

p2p/hybrid CDNs

mobile devices low latency
access

Challenge

• Finding a set of principles for designing distributed

systems that are aware of the geo-replication

hierarchy

– Much like our operating systems must be aware of the

storage hierarchystorage hierarchy

• This talk: more narrow aspect of the problem

– Managing replicas in separate data centers

10

Current practice: examples and limitations

• Facebook + PNUTS: single master, read-only mirror

replicas

– Works well when there is a single updater

– Not the case, e.g., in social networking services

• Amazon: Eventual consistency• Amazon: Eventual consistency

– Assumes a seamless merge strategy and may allow

undesirable behaviors

– Folklore: Eventual consistency is no consistency

11

An observation and a challenge

• Eventual consistency works most of the time, but need

some strongly consistent operations

• Must let both weakly and strongly consistent

operations co-exist [LazyReplication:PODC90,Walter:SOSP11]

– But which level of consistency to use for an operation?– But which level of consistency to use for an operation?

12

Need to find principled ways to build systems that are

fast as possible, consistent when needed

Outline

• Mixing strong and eventual consistency in a single

system

• Transforming applications to safely leverage eventual

consistency when possibleconsistency when possible

• Evaluation

Balance strong/eventual consistency

Strong consistency Eventual consistency

A1 B1R1 A1 B1

B2

A2

B3

R1

R2

R3

Balance strong/eventual consistency

Strong consistency Eventual consistency

A1 B1R1 A1 B1

B2

A2

B3

R1

R2

R3

Balance strong/eventual consistency

A1 B1R1 A1 B1

RedBlue EventualStrong

A1 B1

B2

A2

B3

R1

R2

R3

A1

R1

B1

B2

R2A2

B3R3

� Low latency of eventual consistency when possible

� Coordination for strong consistency only when necessary

Gemini coordination system

A1

R1

B1

B2

A1 B1R1 B2
Alice Bob

R2R2

Storage

engine

Storage

engine

Coordinator Coordinator

Cross-site

communication

A1 B1R1 B2R2

Gemini coordination system

A1

R1

B1

B2

Alice Bob

R2
A2

A2 B4R3

B4R3

Storage

engine

Storage

engine

Coordinator Coordinator

Cross-site

communication

R2

A1 R1

B1

B1 B2 A1 R1

B2

A2 B4R3

R2

A RedBlue consistent bank system

float balance, interest;

deposit(float m){

balance = balance + m;

}

accrueinterest(){

float delta=balance × interest;

A RedBlue consistent bank system

float balance, interest;

deposit(float m){

balance = balance + m;

}

accrueinterest(){

float delta=balance × interest;

Alice in EU Bob in US

Initial: balance = 100, interest = 0.05

100 100

float balance, interest;

deposit(float m){

balance = balance + m;

}

accrueinterest(){

float delta=balance × interest;

� Problem: Different execution

orders lead to divergent state.

� Cause: accrueinterest doesn’t float delta=balance × interest;

balance=balance + delta;

}

withdraw(float m){

if(balance-m>=0)

balance=balance - m;

else

print “Error”

}

float delta=balance × interest;

balance=balance + delta;

}

withdraw(float m){

if(balance-m>=0)

balance=balance - m;

else

print “Error”

}

≠≠≠≠≠≠≠≠

deposit(20) accrueinterest()

120 105

126 125

deposit(20) accrueinterest()
float delta=balance × interest;

balance=balance + delta;

}

withdraw(float m){

if(balance-m>=0)

balance=balance - m;

else

print “Error”

}

� Cause: accrueinterest doesn’t

commute with deposit.

� Implication: Convergence

requires Red, but Red is slow.

Outline

• Mixing strong and eventual consistency in a single

system

• Transforming applications to safely leverage eventual

consistency when possibleconsistency when possible

• Evaluation

Problem of replicating operations

Alice in EU Bob in US

Initial: balance = 100, interest = 0.05

100 100

deposit(20): +20 accrueinterest(): +5

≠≠≠≠≠≠≠≠

deposit(20): +20 accrueinterest(): +5

120 105

126 125

deposit(20) : +20accrueinterest(): +6

SideSide--effects vary effects vary

depending on the state depending on the state

the operation observedthe operation observed

Generator/Shadow operation

• Intuitively, the execution of accrueinterest can be

divided into:

– A generator operation

• decides how much interest to be accrued

• has no side effects

– A shadow operation– A shadow operation

• adds the decided interest to the balance

Generate once, shadow everywhere

Alice Bob

2. Generator produces a
colored shadow h(d,S).

A1

Storage

engine

Storage

engine

Coordinator Coordinator

Cross-site

communication

G

1. Generator makes a decision d

based on a local state S.

colored shadow h(d,S).

3. Shadow is applied at all sites.

h(d,S)h(d,S)

Bank generator/shadow operations

deposit(float m){

balance = balance + m;

}

accrueinterest(){

float delta=balance × interest;

Original/Generator operation Shadow operation

deposit’(float m){

balance = balance + m;

}

accrueinterest’(float delta){

produces

producesfloat delta=balance × interest;

balance=balance + delta;

}

withdraw(float m){

if(balance-m>=0)

balance=balance - m;

else

print “Error”

}

accrueinterest’(float delta){

balance=balance + delta;

}

withdrawAck’(float m){

balance=balance - m;

}

withdrawFail’(){

}

produces

deposit’(float m){

balance = balance + m;

}

accrueinterest’(float delta){

Bank generator/shadow operations

deposit(float m){

balance = balance + m;

}

accrueinterest(){

float delta=balance × interest;

Original/Generator operation Shadow operation

deposit’(float m){

balance = balance + m;

}

accrueinterest’(float delta){

produces

produces

+m

accrueinterest’(float delta){

balance=balance + delta;

}

withdrawAck’(float m){

balance=balance - m;

}

withdrawFail’(){

}

float delta=balance × interest;

balance=balance + delta;

}

withdraw(float m){

if(balance-m>=0)

balance=balance - m;

else

print “Error”

}

accrueinterest’(float delta){

balance=balance + delta;

}

withdrawAck’(float m){

balance=balance - m;

}

withdrawFail’(){

}

produces
+delta

-m

All four shadow banking All four shadow banking

operations commute with operations commute with

each other!each other!

Fast and consistent bank

Alice in EU Bob in US

100 100deposit(20) : +20 accrueinterest(): +5

Initial: balance = 100, interest = 0.05

120

125

105

125

+20 +5

Generator op

Shadow

op

+20 +5

Not so fast …

Alice in EU Bob in US

100 100deposit(20) : +20 accrueinterest(): +5

Initial: balance = 100, interest = 0.05

120 105

+20 +5

+5 +20

125 125withdraw(100): -100 withdraw(80): -80

Not so fast …

Alice in EU Bob in US

125 125withdraw(100): -100 withdraw(80): -80

� Problem: Different execution orders

lead to a negative balance.

� Cause: Blue operations that potentially

break invariants execute without

25 45

–55 –55

-100 -80-100 -80
break invariants execute without

coordination.

� Implication: We must label successful

withdrawal (withdrawAck’) as Red.

Which must be Red or can be Blue?

a shadow

operation u

commutes commutes

with all

others?

No

Ensuring state

convergence

others?others?

breaks

invariants?
Red Blue

Yes

Yes

No

Ensuring invariant

preservation

Key ideas so far

• RedBlue consistency combines strong and eventual

consistency into a single system.

• The decomposition of generator/shadow operations

expands the space of possible Blue operations.

• A simple rule for labeling is provably state convergent

and invariant preserving.

Evaluation

Questions

• How common are Blue operations?

• Does RedBlue consistency improve user-observed

latency?

• Does throughput scale with the number of sites?• Does throughput scale with the number of sites?

Questions

• How common are Blue operations?

• Does RedBlue consistency improve user-observed

latency?

• Does throughput scale with the number of sites?• Does throughput scale with the number of sites?

Case studies

• Applications:

– Two e-commerce benchmarks: TPC-W, RUBiS

– One social networking app: Quoddy

Apps # Original update txns
Blue/Red

update ops

TPC-W 7 0/7

RUBiS 5 0/5

Quoddy 4 0/4

Case studies

• Applications:

– Two e-commerce benchmarks: TPC-W, RUBiS

– One social networking app: Quoddy

Apps # Original update txns
Blue/Red

update ops
Shadow ops

Blue/Red

update ops

TPC-W 7 0/7 16 14/2

RUBiS 5 0/5 9 7/2

Quoddy 4 0/4 4 4/0

How common are Blue operations?

Runtime Blue/Red ratio in different applications with

different workloads:

Apps workload
Originally

Blue (%) Red(%)

TPC-W

Browsing mix 96.0 4.0

Shopping mix 85.0 15.0

Ordering mix 63.0 37.0

RUBiS Bidding mix 85.0 15.0

Quoddy a mix with 15% update 85.0 15.0

How common are Blue operations?

Runtime Blue/Red ratio in different applications with

different workloads:

Apps workload
Originally With shadow ops

Blue (%) Red(%) Blue (%) Red(%)

The vast majority of operations are Blue.

TPC-W

Browsing mix 96.0 4.0 99.5 0.5

Shopping mix 85.0 15.0 99.2 0.8

Ordering mix 63.0 37.0 93.6 6.4

RUBiS Bidding mix 85.0 15.0 97.4 2.6

Quoddy a mix with 15% update 85.0 15.0 100 0

Questions

• How common are Blue operations?

• Does RedBlue consistency improve user-observed

latency?

• Does throughput scale with the number of sites?• Does throughput scale with the number of sites?

Experimental setup

• Experiments with:

– TPC-W, RUBiS and Quoddy

• Deployment in Amazon EC2

– spanning 5 sites (US-East, US-West, Ireland, Brazil, – spanning 5 sites (US-East, US-West, Ireland, Brazil,

Singapore)

– locating users in all five sites and directing their requests

to closest server

Experimental setup

• Experiments with:

– TPC-W, RUBiS and Quoddy

• Deployment in Amazon EC2

– spanning 5 sites (US-East, US-West, Ireland, Brazil, – spanning 5 sites (US-East, US-West, Ireland, Brazil,

Singapore)

– locating users in all five sites and directing their requests

to closest server

Does RedBlue consistency improve user-

observed latency?

2000

3000

US-East US-West Ireland Brazil Singapore

0

1000

2000

1-site original TPC-W 5-site TPC-W with Gemini

Latency

(ms)

Average latency for users at all five sites

Does throughput scale with the number of sites?

800

1200

1600

0

400

800

1-site

Original

1-site

Gemini

2-site

Gemini

3-site

Gemini

4-site

Gemini

5-site

Gemini

Request/s

Peak throughput for different deployments

Conclusion

• RedBlue consistency allows strong consistency and

eventual consistency to coexist.

• Generator/shadow operation extends the space of

fast operations.fast operations.

• A precise labeling methodology allows for systems to

be fast and behave as expected.

• Experimental results show our solution improves

both latency and throughput.

Making Geo-Replicated Systems Fast

THANK YOU!

Making Geo-Replicated Systems Fast

when Possible, Consistent if Necessary

