
Making Geo-Replicated Systems Fast 

when Possible, Consistent if Necessary

Rodrigo Rodrigues

NOVA University of LisbonNOVA University of Lisbon

Joint work with Allen Clement, Johannes Gehrke, Cheng Li, 
Daniel Porto and Nuno Preguiça

Max Planck Institute for Software Systems, Cornell, and NOVA U.

IFIP Workshop – January 18, 2013



Higher latency ⇒ Lower revenue

Bing: 2-sec slowdown reduced revenue per user by 4.3%



Consequence: Geo-replication
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Flip-side of geo-replication

• Geographically disperse replicas are expensive to 

synchronize

• Leads to existence of various different levels of geo-

replication: the geo-replication hierarchy
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The geo-replication hierarchy

• First level: centralized server

• Second level: replicas at distant data centers

• The two levels can co-exist:

– Updates are funneled through primary

– Secondary replicas process read requests– Secondary replicas process read requests
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The geo-replication hierarchy (cont.)

• Third level: replicas deployed in conventional CDN 

infrastructures

• Examples:

– Akamai (static content): 105,000 servers in 78 

countriescountries

– Google (mostly youtube)
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The geo-replication hierarchy (cont.)

• Fourth level: peer-to-peer / hybrid CDNs

• Lower cost of maintaining CDN by leveraging 

voluntary contributions of clients

• Example: Akamai netsession
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The geo-replication hierarchy (cont.)

• Fifth level: replicas on mobile devices

• Local replication overcomes the high latency / low 

throughput / weak connectivity

• Example:
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The geo-replication hierarchy 

Master / primary replica

Replicas in geo-diverse

data centers

inexpensive

to synchronize
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Challenge

• Finding a set of principles for designing distributed 

systems that are aware of the geo-replication 

hierarchy

– Much like our operating systems must be aware of the 

storage hierarchystorage hierarchy

• This talk: more narrow aspect of the problem

– Managing replicas in separate data centers
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Current practice: examples and limitations

• Facebook + PNUTS: single master, read-only mirror 

replicas

– Works well when there is a single updater

– Not the case, e.g., in social networking services

• Amazon: Eventual consistency• Amazon: Eventual consistency

– Assumes a seamless merge strategy and may allow 

undesirable behaviors

– Folklore: Eventual consistency is no consistency
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An observation and a challenge

• Eventual consistency works most of the time, but need 

some strongly consistent operations

• Must let both weakly and strongly consistent 

operations co-exist [LazyReplication:PODC90,Walter:SOSP11]

– But which level of consistency to use for an operation?– But which level of consistency to use for an operation?
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Need to find principled ways to build systems that are

fast as possible, consistent when needed



Outline

• Mixing strong and eventual consistency in a single 

system

• Transforming applications to safely leverage eventual 

consistency when possibleconsistency when possible

• Evaluation 
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Balance strong/eventual consistency

A1 B1R1 A1 B1

RedBlue EventualStrong
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� Low latency of eventual consistency when possible

� Coordination for strong consistency only when necessary



Gemini coordination system
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Gemini coordination system
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A RedBlue consistent bank system



float balance, interest;

deposit(float m){

balance = balance + m;

}

accrueinterest(){

float delta=balance × interest;
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deposit(float m){

balance = balance + m;

}

accrueinterest(){

float delta=balance × interest;

Alice in EU Bob in US

Initial: balance = 100, interest = 0.05

100 100

float balance, interest;

deposit(float m){

balance = balance + m;

}

accrueinterest(){

float delta=balance × interest;

� Problem: Different execution 

orders lead to divergent state.

� Cause: accrueinterest doesn’t float delta=balance × interest;

balance=balance + delta;

}

withdraw(float m){

if(balance-m>=0)

balance=balance - m;

else

print “Error”

}

float delta=balance × interest;

balance=balance + delta;

}

withdraw(float m){

if(balance-m>=0)

balance=balance - m;

else

print “Error”

}

≠≠≠≠≠≠≠≠

deposit(20) accrueinterest()

120 105

126 125

deposit(20) accrueinterest()
float delta=balance × interest;

balance=balance + delta;

}

withdraw(float m){

if(balance-m>=0)

balance=balance - m;

else

print “Error”

}

� Cause: accrueinterest doesn’t 

commute with deposit.

� Implication: Convergence 

requires Red, but Red is slow.
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Problem of replicating operations

Alice in EU Bob in US

Initial: balance = 100, interest = 0.05

100 100

deposit(20): +20 accrueinterest(): +5

≠≠≠≠≠≠≠≠

deposit(20): +20 accrueinterest(): +5

120 105

126 125

deposit(20) : +20accrueinterest():  +6

SideSide--effects vary effects vary 

depending on the state depending on the state 

the operation observedthe operation observed



Generator/Shadow operation

• Intuitively, the execution of accrueinterest can be 

divided into:

– A generator operation

• decides how much interest to be accrued

• has no side effects

– A shadow operation– A shadow operation

• adds the decided interest to the balance



Generate once, shadow everywhere

Alice Bob

2. Generator produces a 
colored shadow h(d,S).

A1

Storage 

engine

Storage 

engine

Coordinator Coordinator

Cross-site 

communication

G

1. Generator makes a decision d 

based on a local state S.

colored shadow h(d,S).

3. Shadow is applied at all sites.
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Bank generator/shadow operations

deposit(float m){

balance = balance + m;

}

accrueinterest(){

float delta=balance × interest;

Original/Generator operation Shadow operation

deposit’(float m){

balance = balance + m;

}

accrueinterest’(float delta){

produces

producesfloat delta=balance × interest;

balance=balance + delta;

}

withdraw(float m){

if(balance-m>=0)

balance=balance - m;

else   

print “Error”

}

accrueinterest’(float delta){

balance=balance + delta;

}

withdrawAck’(float m){  

balance=balance - m;

}

withdrawFail’(){

}

produces



deposit’(float m){

balance = balance + m;

}

accrueinterest’(float delta){

Bank generator/shadow operations

deposit(float m){

balance = balance + m;

}

accrueinterest(){

float delta=balance × interest;

Original/Generator operation Shadow operation

deposit’(float m){

balance = balance + m;

}

accrueinterest’(float delta){

produces

produces

+m

accrueinterest’(float delta){

balance=balance + delta;

}

withdrawAck’(float m){  

balance=balance - m;

}

withdrawFail’(){

}

float delta=balance × interest;

balance=balance + delta;

}

withdraw(float m){

if(balance-m>=0)

balance=balance - m;

else   

print “Error”

}

accrueinterest’(float delta){

balance=balance + delta;

}

withdrawAck’(float m){  

balance=balance - m;

}

withdrawFail’(){

}

produces
+delta

-m

All four shadow banking All four shadow banking 

operations commute with operations commute with 

each other!each other!



Fast and consistent bank

Alice in EU Bob in US

100 100deposit(20) : +20 accrueinterest(): +5

Initial: balance = 100, interest = 0.05
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125
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Not so fast …

Alice in EU Bob in US

100 100deposit(20) : +20 accrueinterest(): +5

Initial: balance = 100, interest = 0.05

120 105

+20 +5

+5 +20

125 125withdraw(100): -100 withdraw(80): -80



Not so fast …

Alice in EU Bob in US

125 125withdraw(100): -100 withdraw(80): -80

� Problem: Different execution orders 

lead to a negative balance.

� Cause: Blue operations that potentially 

break invariants execute without 

25 45

–55 –55

-100 -80-100 -80
break invariants execute without 

coordination.

� Implication: We must label successful 

withdrawal ( withdrawAck’) as Red.



Which must be Red or can be Blue?

a shadow 

operation u

commutes commutes 

with all 

others?

No

Ensuring state 

convergence

others?others?

breaks 

invariants?
Red Blue

Yes

Yes

No

Ensuring invariant 

preservation



Key ideas so far

• RedBlue consistency combines strong and eventual 

consistency into a single system.

• The decomposition of generator/shadow operations 

expands the space of possible Blue operations.

• A simple rule for labeling is provably state convergent 

and invariant preserving.



Evaluation



Questions

• How common are Blue operations?

• Does RedBlue consistency improve user-observed 

latency?

• Does throughput scale with the number of sites?• Does throughput scale with the number of sites?
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Case studies

• Applications:

– Two e-commerce benchmarks: TPC-W, RUBiS

– One social networking app: Quoddy

Apps # Original update txns
# Blue/Red 

update ops

TPC-W 7 0/7

RUBiS 5 0/5

Quoddy 4 0/4



Case studies

• Applications:

– Two e-commerce benchmarks: TPC-W, RUBiS

– One social networking app: Quoddy

Apps # Original update txns
# Blue/Red 

update ops
# Shadow ops

# Blue/Red 

update ops

TPC-W 7 0/7 16 14/2

RUBiS 5 0/5 9 7/2

Quoddy 4 0/4 4 4/0



How common are Blue operations?

Runtime Blue/Red ratio in different applications with 

different workloads:

Apps workload
Originally

Blue (%) Red(%)

TPC-W

Browsing mix 96.0 4.0

Shopping mix 85.0 15.0

Ordering mix 63.0 37.0

RUBiS Bidding mix 85.0 15.0

Quoddy a mix with 15% update 85.0 15.0



How common are Blue operations?

Runtime Blue/Red ratio in different applications with 

different workloads:

Apps workload
Originally With shadow ops

Blue (%) Red(%) Blue (%) Red(%)

The vast majority of operations are Blue.

TPC-W

Browsing mix 96.0 4.0 99.5 0.5

Shopping mix 85.0 15.0 99.2 0.8

Ordering mix 63.0 37.0 93.6 6.4

RUBiS Bidding mix 85.0 15.0 97.4 2.6

Quoddy a mix with 15% update 85.0 15.0 100 0



Questions

• How common are Blue operations?

• Does RedBlue consistency improve user-observed 

latency?

• Does throughput scale with the number of sites?• Does throughput scale with the number of sites?



Experimental setup

• Experiments with: 

– TPC-W, RUBiS and Quoddy

• Deployment in Amazon EC2 

– spanning 5 sites (US-East, US-West, Ireland, Brazil, – spanning 5 sites (US-East, US-West, Ireland, Brazil, 

Singapore)

– locating users in all five sites and directing their requests 

to closest server
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Does RedBlue consistency improve user-

observed latency?
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Does throughput scale with the number of sites?
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Conclusion

• RedBlue consistency allows strong consistency and 

eventual consistency to coexist.

• Generator/shadow operation extends the space of 

fast operations.fast operations.

• A precise labeling methodology allows for systems to 

be fast and behave as expected.

• Experimental results show our solution improves 

both latency and throughput.
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