Cloud Based Analytics for Cloud Based Applications

András Pataricza, with contributions of Imre Kocsis¹, Gábor Horváth, Ágnes Salánki

Dept. of Measurement and Information Systems, BME, Hungary

Standard infrastructure for demanding applications?

Power supply to an ER

- COTS energy source replicated ->
- Warm backup

- Power supply to an ER
- COTS energy source replicated
- Warm backup

Clouds for demanding applications?

Virtual Desktop
Infrastructure

Telecommunications

Experimental setup

IT EDA is Big Data!

Which determine the QoS?

IT EDA is Big Data!

Rare events: lot of sand, a few pellets

Typically sand: gold mining ≠ data mining

Visual analytics = causal insight

Computing power use

= CPU use ×

CPU clock rate (const.)

Should be pure

proportional

Correlation coefficient: 0.99998477434137 Well-visible, but numerically suppressed

Origin???

Visual analytics

Noisy...
High frequency
components
dominate
But they correlate
(93%!)
YOU DON'T SEE IT

Dangers in a standard cloud for demanding apps?

Impacts of resource sharing?

12

Short transient faults – long recovery

Deterministic (?!) run-time in the public cloud...

Performance outage intolerable by overcapacity

Variance tolerable by overcapacity

The noisy neighbour problem

Tenant-side measurability and observability

Let's try it at user level

The mistery shopper concept

Basic logic as with benchmarks, but...

Metric req:

Not trivially feasible... but everything else impossible

o same *interference*-

same *resource*-sens

representative for t

Example: short computation bursts sampling available CPU for longer computation

- Runtime req:
 - Non-intrusiveness (instead of saturation)
 - Long running (rare events)
 - (Low specific impact on service)

Indirect platform & QoS observability

Mystery shopper & service QoS

Summary

Technical

- SLA coverage needed for all aspects
- Missing guarantees can be (somewhat) compensated
 - Cheap computing power -> redundancy
 - "Double" autonomic computing
 - Cloud level provider
 - Application level user

Methodology

- Visual exploratory data analysis for insight
- Algorithmic analysis for proofs and evaluation
- Fault-tolerance design patterns revisited
 - Cheap redundancy in the cloud

