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Project summary	


w 5.5 year National project (CREST) 

w Goal 
n  Platform for performing many and various tasks 

dependably, efficiently and adaptively 
n  Demonstration in automotive control system area  
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Backgrounds	
 

w  Recent cars are equipped with many ECUs 
n  Conventional ECU configuration	
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Backgrounds	
 

w  Recent cars are equipped with many ECUs 
n  Centralized ECU approach	
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Any ECU can access any sensors/actuators 
 
 

ECUs efficiently used by balancing loads 
Tasks continuously executed even if some ECUs become faulty  

(i.e., faulty ECU does not result in malfunction of its specific functions) 



Backgrounds	
 

w Centralized ECU approach 
n  NoC (Network-on-Chip) based 

l  Some European projects 
w  Recomp: Reduced certification costs for trusted multi-core 

platforms. http://atc.ugr.es/recomp/.  
w  Race: Robust and reliant automotive computing environment for 

future ecars. http://projekt-race.de/.  
n  Multi-Chip NoC based [Yoneda, et al. PRDC2012] 

l  Multiple NoCs are connected via off-chip links 
w  On-chip networks seamlessly extended to multi-chip networks 

l  Advantages 
w  Cost-effective : small NoC chips are cheap, and various sizes of 

configuration are possible (without developing different sizes of 
NoCs) 

w  Chip-level redundancy : tolerate a chip fault	
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Outcome	
 

w Hardware platform 
n  Multi-Chip NoC 

l  Fully asynchronous on-chip network 
l  Dependable, adaptive, deadlock-free routing 
l  Efficient inter-chip communication technology 

w Dependable task execution 
n  Pair & Swap 

w  Task allocation 
n  Redundant allocation, redundant scheduling 

w Demonstration of the proposed approach 
n  Practical automotive application 
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Fault tolerance in Routing level	
 

w When a router goes faulty, a detour path 
will be taken 
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Fault tolerance in Routing level 

w Single chip/router/link fault can be 
tolerated in each cluster 
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Dependability in Processor level	
 

w  Duplicated execution, comparison, and pair-
reconfiguration 
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Pair & Swap	
 

w  Duplicated execution, comparison, and pair-
reconfiguration 
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6) The I/O core then decides the final comparison result and issues actuator output signals to the outside of the chip when
there is no mismatch. If there is a mismatch, the retry-and-decision phase starts. The I/O core specifies the same task
performed by the same processor cores and an additional processor core so that those three processor cores compose
a TMR. Then, the operation is repeated from the above 2.

Figure 3 shows how the system works under a non-faulty condition. As shown in Figure 3, a processor core Px0
(x = 0, 1, 2) is coupled with a processor core Px1 as a pair, resulting in three pairs. In the pair phase, two processor
cores in each pair perform two identical copies of a specified task and send their results to the I/O core. The times when
processor cores start the specified task are different since the latency from the I/O core to each processor core through the
on-chip networks is different. The I/O core gathers computation results from processor cores and compares them. Normally,
all the results match as shown in rounded rectangle in Figure 3. Thus, the pair phase is continued.

C. Fault location mechanism

If a fault is detected by a mismatch, the retry-and-decision phase starts. The mismatched pair and one of other processor
cores which stores the mismatched task compose a TMR. Then, the I/O core sends the same data which was sent in the
pair phase to the three processor cores and gathers their results. Figure 4 shows the operation of the proposed scheme when
a transient fault occurs. The initial configuration is the same as that shown in Figure 3. However, at the first comparison, it
is recognized that the two processor cores P00 and P01 did not produce the same result. For the retry-and-decision phase,
processor cores P00, P01, and P10 compose a TMR. Note that P10 has task A in its private memory as shown in Figure 2.
This makes it possible to detect whether the fault was transient or permanent. As task A encountered a problem it must be
run again after the first comparison. If no mismatches are found at the second comparison, the fault detected at the first
comparison can therefore be assumed to be transient. This means that the next tasks can be performed without altering the
processing pairs as shown in Figure 4.
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Figure 4. Transient fault operation.
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Figure 5. Permanent fault operation.

Figure 5 shows the operation of the proposed system when a permanent fault occurs. From the figure, it can be seen that
the first two operations between the I/O core and processor cores are the same as those shown in Figure 4. At the second
comparison, if a permanent fault occurred in processor core P00, two mismatches would exist in the TMR; P00 <> P01 and
P00 <> P10. Thus, the processor core P00 can be confirmed as faulty and the remaining five cores would then be able to
compose three pairs after the second comparison. In this case, processor cores P01 and P10 compose a new pair, that is, the
processor core P10 performs both task B and task A sequentially. Thus, in the next pair phase, the I/O core compares two
tasks B and C at the first comparison and then compares task A at the second comparison as shown in Figure 5. However,
the deadline period is assumed to be enough long to execute three tasks (as mentioned later) and comparisons sequentially.
Thus, performance degradation does not occur.

According to the proposed scheme, the entire system achieves graceful degradation. If a permanent fault occurs in
processor core P01 after the above condition shown in Figure 5, processor cores P10 and P11 perform both task B and
task A sequentially as shown in Figure 6. In this case, if a permanent fault occurs in either P10 or P11, the entire system
is considered to be down since the remaining number of processor cores which can perform task A is only one, and thus
the comparisons cannot be performed. On the other hand, in a fortunate case, it can be allowed that N processor cores get
failed in a 2N core NoC-based MPSoC. Figure 7 shows the operation after processor cores P00, P10, and P20 have gotten
failed in the previous configuration. All the remaining cores P01, P11, and P21 perform two tasks sequentially. The I/O
core compares their results after receiving the second set of results. Normally, all the results match as shown in rounded
rectangle.

Figure 8 shows the operation when a transient fault occurs. At the first comparison it is recognized that one of three
comparison results is a mismatch. In this case, there is no redundant cores to execute the mismatched task. Thus, the
mismatched task is re-executed on the same cores as shown in Figure 8. If no mismatch is found at the second comparison,

Tasks are redundantly loaded in several cores	




Task allocation 
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Task allocation 

2013/1/21 IFIP WG 10.4  14 

UnitDelay()	


Sum()	


Sub() 

Gain1() 

Error	


Product() 

Voltage	


UnitDelay1()	


Gain3() 

Gain2() 

Sum2()	


Sat()	


Gain()	


Task graph	


128	

128	


128	
 128	


128	


128	


128	


128	


128	


128	


128	


128	


128	




Task allocation 
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Task allocation 

2013/1/21 IFIP WG 10.4  16 

                       p0           p1         p2          p3	


T1	


T2	

T2	


T3	
T3	


T4	

T4	


T1	
 T1	


T2	


T3	


T4	


Tasks are allocated to CPU cores redundantly	




Task scheduling 
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Demonstration	
 

w Automo&ve	
  Applica&on	
  
n  Integrated	
  a4tude	
  control	
  system	
  for	
  a	
  four-­‐wheel	
  
drive	
  car	
  
l  Torque, brake, and steering control of 4 wheels 

performed by ECUs	
  
n  Highly	
  coopera&ve	
  process	
  needed	
  by	
  each	
  ECU	
  

l  Integrated	
  Control	
  ECU	
  
l  2	
  Electric	
  Power	
  Steering	
  Control	
  ECUs	
  
l  Brake	
  Control	
  ECU	
  
l  BaEery	
  Management	
  ECU	
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Demonstration	
 

w Characteristics of this application 
n   Stopping control is very dangerous 

l  Higher availability is required 
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Experimental system	
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Ongoing work	
 

w Evaluation kit 
n  Evaluation board 

l  Dependable NoC platforms  
w  4 Multi-Chip ASICs 
w  Vertex7(XC7VLX690T) 

l  HILS interface 

n  Pseudo HIL-plant models (executable on PC) 
n  Redundant task allocation tool 

l  Input: (Simplex) Simulink model for application 
l  Output: Executable codes for redundant cores 
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Summary 

w Provide a platform such that 
n  Required dependability can be obtained by 

simply  
l  connecting base-chips, and 
l  allocating tasks redundantly 

n  User just needs to prepare a simplex version 
of an application program 
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