
Development of Dependable
Network-on-Chip Platform (3)	

Tomohiro Yoneda

National Institute of Informatics

Masashi Imai
Hirosaki Univ.	

Takahiro Hanyu
Tohoku Univ.	

Hiroshi Saito
Univ. of Aizu	

Kenji Kise
Tokyo Tech.

Project summary	

w 5.5 year National project (CREST)

w Goal
n  Platform for performing many and various tasks

dependably, efficiently and adaptively
n  Demonstration in automotive control system area

2013/1/21 IFIP WG 10.4 2

Project
Starts

2008.10 2009.4 2010.4 2011.4 2012.4 2013.4 2014.3

Project
Ends

First progress report
at the IFIP winter meeting	
 This progress report

Second progress report
at the IFIP summer meeting	

Backgrounds	

w  Recent cars are equipped with many ECUs
n  Conventional ECU configuration	

2013/1/21 IFIP WG 10.4 3

Sensors/Actuators

ECU1
ECU2

ECUi
ECUn

CAN, FlexRay, etc.

(a) Conventional approach

Backgrounds	

w  Recent cars are equipped with many ECUs
n  Centralized ECU approach	

2013/1/21 IFIP WG 10.4 4

Intelligent Sensors/Actuators

ECU1

CAN, FlexRay, etc.

(b) Centralized ECU approach

R

R R R

R

ECU2 ECUn

Centralized ECUs
Interface cores

CPU cores

Backgrounds	

w  Recent cars are equipped with many ECUs
n  Centralized ECU approach	

2013/1/21 IFIP WG 10.4 5

Intelligent Sensors/Actuators

ECU1

CAN, FlexRay, etc.

(b) Centralized ECU approach

R

R R R

R

ECU2 ECUn

Centralized ECUs
Interface cores

CPU cores

Any ECU can access any sensors/actuators

ECUs efficiently used by balancing loads
Tasks continuously executed even if some ECUs become faulty

(i.e., faulty ECU does not result in malfunction of its specific functions)

Backgrounds	

w Centralized ECU approach
n  NoC (Network-on-Chip) based

l  Some European projects
w  Recomp: Reduced certification costs for trusted multi-core

platforms. http://atc.ugr.es/recomp/.
w  Race: Robust and reliant automotive computing environment for

future ecars. http://projekt-race.de/.
n  Multi-Chip NoC based [Yoneda, et al. PRDC2012]

l  Multiple NoCs are connected via off-chip links
w  On-chip networks seamlessly extended to multi-chip networks

l  Advantages
w  Cost-effective : small NoC chips are cheap, and various sizes of

configuration are possible (without developing different sizes of
NoCs)

w  Chip-level redundancy : tolerate a chip fault	

2013/1/21 IFIP WG 10.4 6

Backgrounds	

w Centralized ECU approach
n  NoC (Network-on-Chip) based

l  Some European projects
w  Recomp: Reduced certification costs for trusted multi-core

platforms. http://atc.ugr.es/recomp/.
w  Race: Robust and reliant automotive computing environment for

future ecars. http://projekt-race.de/.
n  Multi-Chip NoC based [Yoneda, et al. PRDC2012]

l  Multiple NoCs are connected via off-chip links
w  On-chip networks seamlessly extended to multi-chip networks

l  Advantages
w  Cost-effective : small NoC chips are cheap, and various sizes of

configuration are possible (without developing different sizes of
NoCs)

w  Chip-level redundancy : tolerate a chip fault	

2013/1/21 IFIP WG 10.4 7

(a)

(d)

Cluster Cluster

Base chip

(b)

(c)

Base chip

Base chip

off-chip link

Outcome	

w Hardware platform
n  Multi-Chip NoC

l  Fully asynchronous on-chip network
l  Dependable, adaptive, deadlock-free routing
l  Efficient inter-chip communication technology

w Dependable task execution
n  Pair & Swap

w  Task allocation
n  Redundant allocation, redundant scheduling

w Demonstration of the proposed approach
n  Practical automotive application

2013/1/21 IFIP WG 10.4 8

Fault tolerance in Routing level	

w When a router goes faulty, a detour path
will be taken

2013/1/21 IFIP WG 10.4 9

current position	

destination	

x	

y	

detect the fault and
modify the routing	

Fault tolerance in Routing level

w Single chip/router/link fault can be
tolerated in each cluster

2013/1/21 IFIP WG 10.4 10

(a)

(d)

Cluster Cluster

Base chip

(b)

(c)

Base chip

Base chip

Cluster Cluster

Dependability in Processor level	

w  Duplicated execution, comparison, and pair-
reconfiguration

2013/1/21 IFIP WG 10.4 11

Processor
core-00

I/O-0 I/O-1

Processor
core-01

mem-00

Processor
core-11

Processor
core-10

I/O-n

Processor
core-n1

Processor
core-n0

00 10 20 n0

01 11 21 n1

02 12 22 n2

mem-10 mem-n0

mem-01 mem-11 mem-n1

Task A
executed by
this pair	

Task B
executed by
this pair	

Compare Task A results	

Compare Task B results	

Pair & Swap	

w  Duplicated execution, comparison, and pair-
reconfiguration

2013/1/21 IFIP WG 10.4 12

6) The I/O core then decides the final comparison result and issues actuator output signals to the outside of the chip when
there is no mismatch. If there is a mismatch, the retry-and-decision phase starts. The I/O core specifies the same task
performed by the same processor cores and an additional processor core so that those three processor cores compose
a TMR. Then, the operation is repeated from the above 2.

Figure 3 shows how the system works under a non-faulty condition. As shown in Figure 3, a processor core Px0
(x = 0, 1, 2) is coupled with a processor core Px1 as a pair, resulting in three pairs. In the pair phase, two processor
cores in each pair perform two identical copies of a specified task and send their results to the I/O core. The times when
processor cores start the specified task are different since the latency from the I/O core to each processor core through the
on-chip networks is different. The I/O core gathers computation results from processor cores and compares them. Normally,
all the results match as shown in rounded rectangle in Figure 3. Thus, the pair phase is continued.

C. Fault location mechanism

If a fault is detected by a mismatch, the retry-and-decision phase starts. The mismatched pair and one of other processor
cores which stores the mismatched task compose a TMR. Then, the I/O core sends the same data which was sent in the
pair phase to the three processor cores and gathers their results. Figure 4 shows the operation of the proposed scheme when
a transient fault occurs. The initial configuration is the same as that shown in Figure 3. However, at the first comparison, it
is recognized that the two processor cores P00 and P01 did not produce the same result. For the retry-and-decision phase,
processor cores P00, P01, and P10 compose a TMR. Note that P10 has task A in its private memory as shown in Figure 2.
This makes it possible to detect whether the fault was transient or permanent. As task A encountered a problem it must be
run again after the first comparison. If no mismatches are found at the second comparison, the fault detected at the first
comparison can therefore be assumed to be transient. This means that the next tasks can be performed without altering the
processing pairs as shown in Figure 4.

time

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

A: P00 = P01
B: P10 = P11
C: P20 = P21

A: P00 = P01
A: P00 = P10
A: P01 = P10

A: P00 <> P01
B: P10 = P11
C: P20 = P21

Figure 4. Transient fault operation.

I/O core

P00

P01

P10

P11

P20

P21

Task A

Task A

Task B

Task B

Task C

Task C

 deadline period

Task A

Task B

Task B

Task C

Task C

Task A

Task A

Task A

Task A

A:P01 = P10

B: P10 = P11
C: P20 = P21

A: P00 <> P01
B: P10 = P11
C: P20 = P21

A: P00 <> P01
A: P00 <> P10
A: P01 = P10

time

Figure 5. Permanent fault operation.

Figure 5 shows the operation of the proposed system when a permanent fault occurs. From the figure, it can be seen that
the first two operations between the I/O core and processor cores are the same as those shown in Figure 4. At the second
comparison, if a permanent fault occurred in processor core P00, two mismatches would exist in the TMR; P00 <> P01 and
P00 <> P10. Thus, the processor core P00 can be confirmed as faulty and the remaining five cores would then be able to
compose three pairs after the second comparison. In this case, processor cores P01 and P10 compose a new pair, that is, the
processor core P10 performs both task B and task A sequentially. Thus, in the next pair phase, the I/O core compares two
tasks B and C at the first comparison and then compares task A at the second comparison as shown in Figure 5. However,
the deadline period is assumed to be enough long to execute three tasks (as mentioned later) and comparisons sequentially.
Thus, performance degradation does not occur.

According to the proposed scheme, the entire system achieves graceful degradation. If a permanent fault occurs in
processor core P01 after the above condition shown in Figure 5, processor cores P10 and P11 perform both task B and
task A sequentially as shown in Figure 6. In this case, if a permanent fault occurs in either P10 or P11, the entire system
is considered to be down since the remaining number of processor cores which can perform task A is only one, and thus
the comparisons cannot be performed. On the other hand, in a fortunate case, it can be allowed that N processor cores get
failed in a 2N core NoC-based MPSoC. Figure 7 shows the operation after processor cores P00, P10, and P20 have gotten
failed in the previous configuration. All the remaining cores P01, P11, and P21 perform two tasks sequentially. The I/O
core compares their results after receiving the second set of results. Normally, all the results match as shown in rounded
rectangle.

Figure 8 shows the operation when a transient fault occurs. At the first comparison it is recognized that one of three
comparison results is a mismatch. In this case, there is no redundant cores to execute the mismatched task. Thus, the
mismatched task is re-executed on the same cores as shown in Figure 8. If no mismatch is found at the second comparison,

Tasks are redundantly loaded in several cores	

Task allocation

2013/1/21 IFIP WG 10.4 13

Simulink
model

Embedded
Coder	

Simulink model

Atomic sub-
function	

C code

Complier	

Parameters

Task graph
generation	

Task graph

NoC
model

Multiplicities for
scheduling and

allocation

Failure patterns

Multi-Task
Scheduling

and Allocation	

Enumeration of
failure patterns	

Scheduling and
allocation result

Upper
bound of

failed nodes

Task allocation

2013/1/21 IFIP WG 10.4 14

UnitDelay()	

Sum()	

Sub()

Gain1()

Error	

Product()

Voltage	

UnitDelay1()	

Gain3()

Gain2()

Sum2()	

Sat()	

Gain()	

Task graph	

128	

128	

128	
 128	

128	

128	

128	

128	

128	

128	

128	

128	

128	

Task allocation

2013/1/21 IFIP WG 10.4 15

UnitDelay()	

Sum()	

Sub()

Gain1()

Error	

Product()

Voltage	

UnitDelay1()	

Gain3()

Gain2()

Sum2()	

Sat()	

Gain()	

Task graph	

128	

128	

128	
 128	

128	

128	

128	

128	

128	

128	

128	

128	

128	

T1

T2

T3

T4

Task allocation

2013/1/21 IFIP WG 10.4 16

 p0 p1 p2 p3	

T1	

T2	

T2	

T3	
T3	

T4	

T4	

T1	
 T1	

T2	

T3	

T4	

Tasks are allocated to CPU cores redundantly	

Task scheduling

2013/1/21 IFIP WG 10.4 17

Time	
 IO p0 p1 p2 p3	

T1	

T2	

T2	

T3	
T3	

T4	

T4	

cmp	

T1	

cmp	

cmp	

cmp	

Duplicated execution and comparison	

T1	

T2	

T3	

T4	

Demonstration	

w Automo&ve	
 Applica&on	

n  Integrated	
 a4tude	
 control	
 system	
 for	
 a	
 four-­‐wheel	

drive	
 car	

l  Torque, brake, and steering control of 4 wheels

performed by ECUs	

n  Highly	
 coopera&ve	
 process	
 needed	
 by	
 each	
 ECU	

l  Integrated	
 Control	
 ECU	

l  2	
 Electric	
 Power	
 Steering	
 Control	
 ECUs	

l  Brake	
 Control	
 ECU	

l  BaEery	
 Management	
 ECU	

2013/1/21 IFIP WG 10.4 18

Demonstration	

w Automo&ve	
 Applica&on	

n  Integrated	
 a4tude	
 control	
 system	
 for	
 a	
 four-­‐wheel	

drive	
 car	

l  Torque, brake, and steering control of 4 wheels

performed by ECUs	

n  Highly	
 coopera&ve	
 process	
 needed	
 by	
 each	
 ECU	

l  Integrated	
 Control	
 ECU	

l  2	
 Electric	
 Power	
 Steering	
 Control	
 ECUs	

l  Brake	
 Control	
 ECU	

l  BaEery	
 Management	
 ECU	

2013/1/21 IFIP WG 10.4 19

FL Motor
ECU	

FR Motor
ECU	

F EPS ECU	

R EPS ECU	

Brake ECU	

Battery
management

ECU	

Integrated
Control ECU	

RR Motor
ECU	

RL Motor
ECU	

Demonstration	

w Characteristics of this application
n  Stopping control is very dangerous

l  Higher availability is required

2013/1/21 IFIP WG 10.4 20

Experimental system	

2013/1/21 IFIP WG 10.4 21

R	

NI	

HW
Acc	

NI	

R	

R	

R	

FPGA

PC	

External
IO

D/A・
A/D・
etc
	

NI	

V850	

HILS (Hardware　In　the
Loop Simulation) system

Base chip × 4

V850	

V850	

NI	

Routers	

V850E
CPU cores	

H.W. accelerator	

V850E CPU core	

Routers	

Base chip

Ongoing work	

w Evaluation kit
n  Evaluation board

l  Dependable NoC platforms
w  4 Multi-Chip ASICs
w  Vertex7(XC7VLX690T)

l  HILS interface

n  Pseudo HIL-plant models (executable on PC)
n  Redundant task allocation tool

l  Input: (Simplex) Simulink model for application
l  Output: Executable codes for redundant cores

2013/1/21 IFIP WG 10.4 22

Summary

w Provide a platform such that
n  Required dependability can be obtained by

simply
l  connecting base-chips, and
l  allocating tasks redundantly

n  User just needs to prepare a simplex version
of an application program

2013/1/21 IFIP WG 10.4 23

