Development of Dependable Network-on-Chip Platform (3)

Tomohiro Yoneda
National Institute of Informatics

Masashi Imai
Hirosaki Univ.

Takahiro Hanyu
Tohoku Univ.

Hiroshi Saito
Univ. of Aizu

Kenji Kise
Tokyo Tech.
Project summary

- 5.5 year National project (CREST)

- Goal
 - Platform for performing many and various tasks dependably, efficiently and adaptively
 - Demonstration in automotive control system area
Recent cars are equipped with many ECUs

- **Conventional ECU configuration**
Recent cars are equipped with many ECUs
- Centralized ECU approach
Recent cars are equipped with many ECUs
- Centralized ECU approach

Any ECU can access any sensors/actuators
ECUs efficiently used by balancing loads
Tasks continuously executed even if some ECUs become faulty
(i.e., faulty ECU does not result in malfunction of its specific functions)
Backgrounds

- Centralized ECU approach
 - NoC (Network-on-Chip) based
 - Some European projects
 - Multi-Chip NoC based [Yoneda, et al. PRDC2012]
 - Multiple NoCs are connected via off-chip links
 - On-chip networks seamlessly extended to multi-chip networks
 - Advantages
 - Cost-effective: small NoC chips are cheap, and various sizes of configuration are possible (without developing different sizes of NoCs)
 - Chip-level redundancy: tolerate a chip fault
Backgrounds

- Centralized ECU approach
 - NoC (Network-on-Chip) based
 - Some European projects
 - Recomp: Reduced certification costs for trusted multi-core platforms. http://atc.ugr.es/recomp/
 - Race: Robust and reliant automotive computing environment for future ecars. http://projekt-race.de/
 - Multi-Chip NoC based [Yoneda, et al. PRDC2012]
 - Multiple NoCs are connected via off-chip links
 - On-chip networks seamlessly extended to multi-chip networks
 - Advantages
 - Cost-effective: small NoC chips are cheap, and various sizes of configuration are possible (without developing different sizes of NoCs)
 - Chip-level redundancy: tolerate a chip fault
Outcome

- **Hardware platform**
 - Multi-Chip NoC
 - Fully asynchronous on-chip network
 - Dependable, adaptive, deadlock-free routing
 - Efficient inter-chip communication technology

- **Dependable task execution**
 - Pair & Swap

- **Task allocation**
 - Redundant allocation, redundant scheduling

- **Demonstration of the proposed approach**
 - Practical automotive application
Fault tolerance in Routing level

- When a router goes faulty, a detour path will be taken

[Diagram showing a network with nodes and arrows indicating current position and destination, with annotations for detect the fault and modify the routing.]
Fault tolerance in **Routing level**

- Single chip/router/link fault can be tolerated in each cluster
Dependability in **Processor level**

- **Duplicated execution, comparison, and pair-reconfiguration**

 Compare Task A results

 Task A executed by this pair

 Compare Task B results

 Task B executed by this pair
Pair & Swap

- Duplicated execution, comparison, and pair-reconfiguration

Tasks are redundantly loaded in several cores
Task allocation

Simulink model

Atomic sub-function

Simulink model

Task graph generation

Embedded Coder

C code

Complier

Parameters

Multiplicities for scheduling and allocation

NoC model

Upper bound of failed nodes

Task graph

Multi-Task Scheduling and Allocation

Enumeration of failure patterns

Failure patterns

Scheduling and allocation result

Upper bound of failed nodes
Task allocation

Task graph

- UnitDelay
- Sum
- Sub
- Gain1
- Product
- Sat
- Voltage
- Gain2
- Gain3
- UnitDelay1
- Error
- Sum
- Gain
Task allocation

Task graph
Task allocation

Tasks are allocated to CPU cores redundantly

- p0
 - T1
 - T2
 - T3
 - T4
- p1
 - T1
 - T2
 - T3
 - T4
- p2
 - T1
 - T2
 - T3
 - T4
- p3
 - T1
 - T2
 - T3
 - T4
Task scheduling

Duplicated execution and comparison
Demonstration

- **Automotive Application**
 - Integrated attitude control system for a four-wheel drive car
 - Torque, brake, and steering control of 4 wheels performed by ECUs
 - Highly cooperative process needed by each ECU
 - Integrated Control ECU
 - 2 Electric Power Steering Control ECUs
 - Brake Control ECU
 - Battery Management ECU
Demonstration

- Automotive Application
 - Integrated attitude control system for a four-wheel drive car
 - Torque, brake, and steering control performed by ECUs
 - Highly cooperative process
 - Integrated Control ECU
 - 2 Electric Power Steering ECUs
 - Brake Control ECU
 - Battery Management ECU
Demonstration

- Characteristics of this application
 - Stopping control is very dangerous
 - Higher availability is required
Experimental system

Base chip × 4

HILS (Hardware In the Loop Simulation) system

Base chip

Routers

H.W. accelerator

V850E CPU core

FPGA

PC

External IO

D/A・A/D・etc

Engine

Drivetrain

Vehicle Dynamics

Environment
Ongoing work

- **Evaluation kit**
 - Evaluation board
 - Dependable NoC platforms
 - 4 Multi-Chip ASICs
 - Vertex7(XC7VLX690T)
 - HILS interface
 - Pseudo HIL-plant models (executable on PC)
 - Redundant task allocation tool
 - Input: (Simplex) Simulink model for application
 - Output: Executable codes for redundant cores
Summary

- Provide a platform such that
 - Required dependability can be obtained by simply
 - connecting base-chips, and
 - allocating tasks redundantly
 - User just needs to prepare a simplex version of an application program