Development of Dependable Network-on-Chip Platform (3)

Tomohiro Yoneda National Institute of Informatics

Masashi Imai Hirosaki Univ. Takahiro Hanyu Tohoku Univ. Hiroshi Saito Univ. of Aizu

Kenji Kise Tokyo Tech.

- Goal
 - Platform for performing many and various tasks dependably, efficiently and adaptively
 - Demonstration in automotive control system area

Backgrounds

Recent cars are equipped with many ECUs
 Centralized ECU approach

Backgrounds

Recent cars are equipped with many ECUs
 Centralized ECU approach

Intelligent Sensors/Actuators

Any ECU can access any sensors/actuators

ECUs efficiently used by balancing loads Tasks continuously executed even if some ECUs become faulty (i.e., faulty ECU does not result in malfunction of its specific functions)

Backgrounds

- Centralized ECU approach
 - NoC (Network-on-Chip) based
 - Some European projects
 - Recomp: Reduced certification costs for trusted multi-core platforms. *http://atc.ugr.es/recomp/.*
 - Race: Robust and reliant automotive computing environment for future ecars. http://projekt-race.de/.
 - Multi-Chip NoC based [Yoneda, et al. PRDC2012]
 - Multiple NoCs are connected via off-chip links
 - On-chip networks seamlessly extended to multi-chip networks
 - Advantages
 - Cost-effective : small NoC chips are cheap, and various sizes of configuration are possible (without developing different sizes of NoCs)
 - Chip-level redundancy : tolerate a chip fault

- On-chip networks seamlessly extended to multi-chip networks
- Advantages
 - Cost-effective : small NoC chips are cheap, and various sizes of configuration are possible (without developing different sizes of NoCs)
 - Chip-level redundancy : tolerate a chip fault

Outcome

- Hardware platform
 - Multi-Chip NoC
 - Fully asynchronous on-chip network
 - Dependable, adaptive, deadlock-free routing
 - Efficient inter-chip communication technology
- Dependable task execution
 - Pair & Swap
- Task allocation
 - Redundant allocation, redundant scheduling
- Demonstration of the proposed approach
 Practical automotive application

National Institute of Informatics 国立情報学研究所

Fault tolerance in Routing level

 When a router goes faulty, a detour path will be taken

Fault tolerance in Routing level

 Single chip/router/link fault can be tolerated in each cluster

Pair & Swap

 Duplicated execution, comparison, and pairreconfiguration

Tasks are redundantly loaded in several cores

Task graph

2013/1/21 IFIP WG 10.4

National Institute of Informatics 国立情報学研究所

14

Task graph

Tasks are allocated to CPU cores redundantly

Task scheduling

Duplicated execution and comparison

Demonstration

- Automotive Application
 - Integrated attitude control system for a four-wheel drive car
 - Torque, brake, and steering control of 4 wheels performed by ECUs
 - Highly cooperative process needed by each ECU
 - Integrated Control ECU
 - 2 Electric Power Steering Control ECUs
 - Brake Control ECU
 - Battery Management ECU

Demonstration

- Automotive Applicatio
 - Integrated attitude cor drive car
 - Torque, brake, and sto performed by ECUs
 - Highly cooperative pro
 - Integrated Control ECU
 - 2 Electric Power Steerin
 - Brake Control ECU
 - Battery Management E(

Demonstration

- Characteristics of this application
 - Stopping control is very dangerous
 - Higher availability is required

Experimental system

Base chip $\times 4$

国立情報学研究所

Ongoing work

- Evaluation kit
 - Evaluation board
 - Dependable NoC platforms
 - 4 Multi-Chip ASICs
 - Vertex7(XC7VLX690T)
 - HILS interface
 - Pseudo HIL-plant models (executable on PC)
 - Redundant task allocation tool
 - Input: (Simplex) Simulink model for application
 - Output: Executable codes for redundant cores

Summary

- Provide a platform such that
 - Required dependability can be obtained by simply
 - connecting base-chips, and
 - allocating tasks redundantly
 - User just needs to prepare a simplex version of an application program

