Challenges and Progress Toward a Resilient Electric Grid

Bill Sanders

University of Illinois at Urbana-Champaign www.tcipg.org whs@illinois.edu
IFIP Working Group Meeting
January 21, 2013

Infrastructure must provide control at multiple levels

♦Multi-layer Control Loops

- *♦Multi-domain Control Loops*
 - ♦ Demand Response
 - ♦ Wide-area Real-time control
 - ♦ Distributed Electric Storage
 - ♦ Distributed Generation
- ♦ Intra-domain Control Loops
 - → Home controls for smart heating, cooling, appliances
 - ♦ Home controls for distributed generation

♦ Resilient and Secure Control

- ♦ Secure and real-time
 communication substrate
- Integrity, authentication, confidentiality
- ♦ Trust and key management
- ♦ End-to-end Quality of Service
- ♦ Risk and security assessment
- ♦ Model-based, quantitative validation tools

Roadmap – A Framework for Public-Private Collaboration

- Published in January 2006/updated 2011
- Energy Sector's synthesis of critical control system security challenges, R&D needs, and implementation milestones
- Provides strategic framework to
 - align activities to sector needs
 - coordinate public and private programs
 - stimulate investments in control systems security

Roadmap Vision

By 2020, resilient energy delivery systems are designed, installed, operated, and maintained to survive a cyber incident while sustaining critical functions.

CIPG.ORG

Challenge 1: Trustworthy technologies for wide-area monitoring and control

- Smart Grid vision for the wide area (primarily transmission) is:
 - Vastly more sensing at high,
 synchronous rates (example: PMUs)
 - New applications that use these data to improve
 - Reliability
 - Efficiency
 - Ability to integrate renewables
- Achieving the vision requires secure and reliable communications between sensors, control devices, and monitoring and control applications all owned and operated by the many entities that make up the grid

Power Grid of Tomorrow: North American SynchroPhasor Initiative

- Initiative, funded by DOE and industry, to investigate putting
 Phasor Measurement
 Units (PMUs)
 throughout physical
 power infrastructure
- Need significant changes in power cyber infrastructure to support PMUs.
- "Class A" service requires low latency, data integrity & availability ("no gaps")

Challenge 2: Trustworthy technologies for local area management, monitoring, and control

- Electric grid can be divided into three groups: the generation, the wires (T&D), and the demand. This challenge focuses on the demand and the nearby distribution
 - Generation must track load
- For a grid with more renewable, but less controllable generation (e.g., wind and solar PV), more load control will be needed

- Distributed generation may be embedded in "demand"
- New loads (electric vehicles) could drastically change demand profile

Challenge 3: Responding to and managing cyber events

- Combined cyber and physical attack detection, response to detected attacks, and recovery from attack consequences is essential to providing resilience
- Existing detection and response methods are ad hoc, at best, and rely on assumptions that may not hold
- Aim to detect and respond to cyber and physical events, providing resilience to partially successful attacks that may occur:
 - Making use of cyber and physical state information to detect attacks
 - Determine appropriate response actions in order to maintain continuous operation
 - Minimize recovery time when disruptions do occur

Challenge 4: Trust and Risk Assessment

- Define appropriate security metrics
 - Integrated at multiple levels
 - Applied throughout system lifecycle
 - Be both "process" and "product" oriented
- Determine methods for estimating metrics
 - To choose appropriate architectural configuration
 - To test implementation flaws, e.g., fuzzing, firewall rule analysis
 - Can be applied in cost effective manner before an audit
- Which link technical and business concerns

TCIPG Vision & Research Focus

Vision: Drive the design of an adaptive, resilient, and trustworthy cyber infrastructure for transmission & distribution of electric power, which operates through attacks

Research focus: Resilient and Secure Smart Grid Systems

- Protecting the cyber infrastructure
- Making use of cyber and physical state information to detect, respond, and recover from attacks
- Supporting greatly increased throughput and timeliness requirements for next generation energy applications
- Quantifying security and resilience

TCIPG Statistics

- Builds upon \$7.5M NSF TCIP CyberTrust Center 2005-2010
- \$18.8M over 5 years, starting Oct 1, 2009 (including 20% cost share from partner schools)
- Funded by Department of Energy, Office of Electricity and Department of Homeland Security
- 5 Universities
 - University of Illinois at Urbana-Champaign
 - Washington State University
 - University of California at Davis
 - Dartmouth College
 - Cornell University
- 20 Faculty, 20 Senior Technical Staff, 37 Graduate Students, 5
 Undergraduate Students, and 1 Admin

Industry Interaction: Vendors and Utilities that have participated in TCIPG Events

TCIPG Technical Clusters and Threads

Trustworthy Technologies for Wide Area Monitoring and Control

Trustworthy Technologies for Local Area Management, Monitoring, and Control

Responding To and Managing Cyber Events

Trust Assessment

Communication and Data Delivery (4 activities)

Active Demand Management (3 activities)

Design of Semi-automated Intrusion Detection and Response Techniques (6 activities)

Model-based Assessment (6 activities)

Applications (2 activities)

Distribution Networks (2 activities)

Experiment-based Assessment (5 activities)

Component Technologies (3 activities)

2012 TCIPG Activities (1)

Trustworthy Technologies for Wide Area Monitoring and Control Ongoing

- · Cryptographic scalability in the smart grid
- Functional security enhancements for existing SCADA Systems
- GridStat middleware communication framework: Application requirements
- GridStat middleware communication framework: Management security and trust
- GridStat middleware communication framework: Systematic adaptation
- PMU-enhanced power system operations
- Real-time streaming data processing engine for embedded systems
- State-aware decentralized database system for smart grid

Completed

- CONES: Converged networks for SCADA
- Lossless compression of synchrophasor measurement unit archives
- Secure Wide-Area Data and Communication Networks for PMU-based Power System Applications

Trustworthy Technologies for Local Area Management, Monitoring, and Control

Ongoing

- Development of the information layer for the V2G framework implementation
- Password changing protocol
- Smart-grid-enabled distributed voltage support
- Trustworthy framework for mobile smart meters

Completed

• Coordinated island operation and resynchronization

2012 TCIPG Activities (2)

Responding To and Managing Cyber Events

Ongoing

- A game-theoretic response and recovery engine (RRE)
- Assessment and forensics for large-scale smart grid networks
- Hardware-based IDS for AMI devices
- Specification-based IDS for smart meters
- Usable management tools for the smarter grid's data avalanche

New Starts

Specification-based IDS for the DNP3 protocol

Trust Assessment

Ongoing

- Analysis of impacts of smart grid resources on economics and reliability of electricity supply
- Automatic verification of network access control policy implementations
- Modeling methodologies for power grid control system evaluation
- Quantifying the impacts on reliability of coupling between power system cyber and physical components
- Security and robustness evaluation and enhancement of power system applications
- · Synchrophasor data quality
- Test-bed driven assessment
- Trustworthiness enhancement tools for SCADA software and platforms
- · Vulnerability assessment tool using model checking

Completed

- Tools for assessment and self-assessment of ZigBee networks
- Fuzz testing of proprietary SCADA/control network protocols

Selected 2012 Activities: NetAPT

- NetAPT identifies routable paths to network nodes, including critical cyber assets in energy delivery systems
- Mature TCIPG technology
 - Development continues to increase the number of firewalls supported
- More than 40 copies have been licensed to NERC auditors and utilities, including SERC, SPP, WECC, Ameren, PJM, and 3 Electric Cooperatives (AEIC, EIIEC, and Cornbelt Energy)
- Used as a NERC-CIP audit tool
- Commercialization grant from DHS

University of Illinois Information Trust Institute

Heart of Analysis: Rule Graph

Analysis based on identifying paths through "rule graph"

=> Each hop in path corresponds to "policy implementation"

Network Architecture

University of Illinois Information Trust Institute

Using NetAPT

University of Illinois Information Trust Institute

ICCP Traffic Highlighted

Selected 2012 Activities: AMI Security

- Specification-based IDS overcome shortcomings of signature-based IDS, and provide potential protection against zero-day attacks.
 - TCIPG's AMI-lyzer protects AMI systems using C12.22 and C12.19 protocols
 - Successfully deployed in TCIPG AMI testbed
 - Demonstration at EPRI Power Delivery and Utilization meeting
 - Working with FirstEnergy on a pilot deployment
- Hardware-based IDS for meters
 - 3 provisional patent applications

Selected 2012 Activities: Wide-Area Measurement Infrastructures

- GridStat Secure Middleware Communication Framework
 - Interaction with McAfee
 - GridStat Inc. spinoff
 - DEFT-DETER federation
- CONES: Converged Networks for SCADA
 - Transitioned to DOE-funded
 SIEGate (System Information
 Gateway) appliance with GPA
- Impacts of attacks against wide area measurement systems
 - GPS Spoofing
 - Malicious data injection into state estimation
 - Attack success assessment using graph centrality measures

SIEGate: Technical Design Challenges

Performance given system complexity

- Support multiple data types efficiently and securely
- Support multiple priorities
- Minimize latency and maximize throughput

High availability assurance

- Horizontal and vertical scalability
- SIEGate stability and reliability
- Graceful performance degradation

Security assurance

- Maximize security performance
- Minimize security breach impact
- Configurable security levels
- Security versus simplicity/usability tradeoff

Selected 2012 Activities: Autoscopy Jr.

- Autoscopy Jr. is a practical, innovative approach to security in embedded systems
- Research largely completed in 2011
- Tech transfer to SEL
 - SEL has developed a flowcontrol system based on Autoscopy
 - Incorporated into SELExe-Guard project
 - Plans to include in upcoming product lines

Selected 2012 Activities: Testbed

- Implementation of the Itron
 AMI testbed
- New capabilities in experiment automation
- Expanded hardware-in-theloop capability with RTDS
- Federation in the DEFT framework
- More detailed testbed presentation to follow

To Get More Information

- www.tcipg.org
- Request to be on our mailing list
- Attend Monthly Public Webinars
- Attend our 2013
 Summer School –
 June 17-21, 2013
- Attend Industry/ Govt. Workshop Nov. 6-7, 2013

