A Resilient Protection Device for SIEM Systems

Nuno Neves

University of Lisboa, Portugal http://www.di.fc.ul.pt/~nuno

Work with: Alysson Bessani, Miguel Garcia, Eric Vial, Ricardo Fonseca, Paulo Veríssimo

EC project FP7-257475 MASSIF: MAnagement of Security information and events in Service InFrastructures

Project funded by the European Commission ICT workprogramme 2009 (FP7-ICT-2009-5)

Context

Security Information and Event Management (SIEM) systems offer various capabilities for the

- collection and analysis of security information in networks
- allowing the correlation of thousands of events and the reporting of attacks and intrusions in near real-time

Main components

- Sensors: collect information about the local environment and help on the responses; Can be: signature or anomaly-based IDS; vulnerability scanners; network profiling; inventory management
- Collectors: gather and normalize the events generated by the sensors and any external systems; can be deployed standalone or in a Sensor
- Management server (or SIEM engine): event correlation and realtime monitoring; risk assessment; reporting and data mining; network profiling and inventory management

SIEM Architecture – A Structural View

SIEM Architecture – Attack Vectors

Protecting the Core Services

Like a highly resilient application-level firewall protecting the information flows in and out of the core SIEM services

Application Firewalls / IPS

- Acts on the application layer, inspecting the traffic to block malicious content that attempts to exploit known logical flaws at the destination
- May also offload encryption from servers, block application input/output from detected intrusions or malformed communication, manage or consolidate authentication

Security related vulnerabilities, OSVDB, 2010 to 2012

Barracuda Networks	29
Cisco Adaptive Security Appliance	36
Juniper Networks	64
Packet filter	3
Comodo Internet Security	10
netfilter	29

Cisco Adaptive Security Appliances contains a flaw that may allow a remote denial of service. The issue is triggered when handling shun events, and will result in loss of availability for the program via specially crafted IP packets.

Related Work

- Bessani et al., The CRUTIAL Way of Critical Infrastructure Protection, IEEE Security and Privacy, 2008
- Roeder & Schneider, Proactive Obfuscation, ACM Transactions on Computer Systems, 2010
- Some of the limitations of the previous solution
 - used simple filtering mechanisms
 - required specific communication hardware support
 - imposed strict timeliness assumptions in part of the system
 - relatively static configuration of the replicas

Support both stateless and stateful application level filtering Eliminate need for specific hardware

Adapt to failure conditions Reduce synchrony

assumptions

OUR GOALS VERSUS RELATED WORK

Design based on Related Work

Potential limitations:

- a primary failure (detection, new leader, recover consistent state)
- load is not distributed evenly (primary is more loaded)
- filters had to separate good and discard bad traffic
- the number of filters is typically static

Overview

Overview

Wish list

- ensure that only benign traffic goes through with high probability
- highly resilient to a variety of failures
 - crashes & intrusions
 - DoS & other network attacks
- good performance
- Willing to tradeoff
 - some level of transparency

Design

Service

Main Components

- Pre-Filters
 - lightweight, simple filtering operations to be efficient
 - are created/removed dynamically to adapt to client load & respond to DoS attacks and intrusions
 - employ detection & recovery techniques for resilience
 - tolerates up to m-1 failures out of m pre-filters
- TOM Channel
 - asynchronous Byzantine total order multicast
- Filters
 - application level security policies and filtering
 - (mainly) static group
 - uses masking techniques based BFT replication
 - tolerates up to (n-1)/3 failures out of n filters

Mechanisms for Addressing Failures

Outside attackers

[Integrity/Auth] message authentication (i.e., MACs) at clients [Availability/DoS]

i) discard malicious traffic as fast as possible;

ii) replace the pre-filters under attack with new ones

Limitation: attacker completely fills the channels to the core-MIS

Malicious clients

[Integrity/Auth] perform application filtering [Availability/DoS] impose throttling limits and discard extra traffic Limitation: can not detect all malicious content

Mechanisms for Addressing Failures (cont.)

Compromised pre-filters

[Integrity/Auth] cannot fake authentication [Availability/DoS] replace misbehaving pre-filters

Compromised filters

[Integrity/Auth] voting at the final service [Availability/DoS] eventually use proactive-reactive recovery

Thank you for your attention!

Questions?