
Insup Lee
PRECISE Center

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania

IFIP 10.4 Working Group Meeting
Rockport, MA
July 1, 2012

Assurance Cases for Generic PCA
Reference Implementation and Beyond

Miniaturization
• Implantable devices
• Ingestible sensors

Interoperation
• Executable clinical
scenarios

• Safety interlocks

Teleoperation
• Tele-ICU
• Robotic surgery

Autonomy
• Smart alarms
• Context-sensitive
decision support

• Physiological closed
loop control

Trends in Medical Cyber-Physical Systems
(MCPS)

MCPS Research Challenges (partial list)
•  High-confidence medical device software

systems (HCMDSS)
–  Model-based and evidence-based

development

–  Patient modeling and simulation

–  User-centered design

•  Medical device integration and
interoperation

•  Adaptive patient-specific algorithms

•  Incremental and compositional methods
for certifiable assurance and safety

Safety-Assured Model-Based
Development of

GPCA Infusion Pump Software

BaekGyu Kim, Anaheed Ayoub, Oleg Sokolsky, Insup Lee,
Paul Jones, Yi Zhang, and Raoul Jetley

Infusion Pump Safety

•  During 2005 and 2009, FDA received
approximately 56,000 reports of
adverse events associated with the use
of infusion pumps
•  1% deaths, 34% serious injuries
•  87 infusion pump recalls to address

safety problems
•  The most common types of problems

–  Software Defect
–  User Interface Issues
–  Mechanical or Electrical Failure

U.S. Food and Drug Administration, Center for Devices and Radiological Health. White
Paper: Infusion Pump Improvement Initiative, April 2010

Generic Infusion Pump (GIP) Project
•  The Goal of GIP Project

–  To develop a set of generic infusion
pump (safety) models and reference
specification that can be used as a
reference standard to verify safety
properties in different classes of
infusion pumps

•  GIP web site

•  provide a repository of medical device
artifacts for use in projects that
advance the science and practice of
developing high-confidence medical
devices, software, and systems, and

•  establish infusion pump safety
reference models

•  Open contribution
•  http://rtg.cis.upenn.edu/gip.php3

Generic PCA (GPCA)

•  Generic PCA (Patient Controlled Analgesic)
Infusion pump

–  GPCA hazard analysis
–  GPCA safety requirements
–  GPCA reference model

•  Goals
–  Demonstrate the use of model-based

development techniques for engineering
medical device software

–  Provide a base open-source reference model
that can be extended and modified to develop
specific implementations of PCA pump
software

–  Provide an example assurance cases for
medical device

–  Provide generic test suites (*)
–  Provide a reasonably complex medical design

for researchers to use in developing, refining,
and improving theories and methods needed
to develop certifiably dependable medical
devices

–  http://rtg.cis.upenn.edu/medical/gpca/
gpca.html

GPCA

PCA Pump

Hazard Analysis

Safety
Requirements

Reference
Model

Model-Based
Implementation

Assurance Case

Generic PCA (GPCA) Project

GPCA Hazard
Analysis

GPCA Safety
Requirements

GPCA Model

FDA’s GPCA Model

•  An abstract representation of software used in a typical PCA
infusion pump.

•  The model is built in Simulink and Stateflow.
•  State Controller

–  Describes a drug administration process such
 as parameter setting and bolus request.

•  Alarm Detecting Component
–  Check hardware conditions and process alarm

on any hardware failure.

•  GPCA Environment
•  User Interface
•  System model

•  The GPCA model interacts with pump
hardware such as motor and sensors
through the System Model.

State
Controller

The System Architecture of GPCA Model

FDA’s GPCA Safety Requirements

•  A minimum set of generic safety requirements that can
be used to evaluate and verify infusion pump software*

–  (e.g.) No normal bolus doses should be administered when the
pump is alarming (in an error state).

–  (e.g.) If the calculated volume of the reservoir is y ml, and an
infusion is in progress, an Empty Reservoir alarm shall be
issued.

–  (e.g.) The pump shall issue an alert if paused for more than t
minutes.

* Raoul Jetley and Paul Jones. Safety Requirements based Analysis of Infusion Pump Software.
Proceedings of the Workshop on Software and Systems for Medical Devices and Services,
December 2007.

GPCA reference implementation
•  FDA initiated

–  GPCA Safety Requirements
–  GPCA Model (Simulink/Stateflow)

•  Goal: Develop a GPCA reference
implementation

•  Provide evidence that the
implementation satisfies the safety
requirements
–  Code synthesis

•  Organize evidence for certification
–  Safety cases
–  Confidence cases

•  All artifacts to be available as open
source
–  [AADL case study by KSU]

Model-Based Development of
GPCA Reference Implementation

Safety
Requirements

GPCA Model

Formal Modeling &
Verification

Automated
Implementation

Testing

GPCA Reference
Implementation

Part 1: Formal Verification Part

GPCA Safety Requirements
GPCA Model

(Simulink/Stateflow)

Manual translation Manual translation

UPPAAL Queries UPPAAL Model

Formal Verification

Verification Result (Yes/No)

Code-Synthesis
(TIMES tool)

Manual
Implementation

External Channels
Clock Source

Glue-Code Platform-Independent Code
(C code)

Code-Interfacing
Compilation

Executable Image
of the target platform Validation

Test sequences
Test sequences

Model Trace

Implementation
Trace Validation Result

UPPAAL (UPPsala + AALborg = UPPAAL)

•  UPPAAL is a tool for Modeling,
Validation, and Verification

•  Major functionalities:
◦  A description language: network of timed

automata extended with variables.
◦  A Simulator : validation tool which enables

examination of possible executions of a
system.

◦  A Model-checker: for automatic verification of
safety properties by reachability analysis of
the symbolic state-space.

Formalization of the FDA’s GPCA model

•  Transform the GPCA model into a network of UPPAAL
automata
–  Retain as much of the architecture of the GPCA model as possible

following a rigorous manual translation process
–  Maintain one-to-one mapping between states, conditions, user

actions, and transitions in the two models
•  State : Alarm-Empty-Reservoir
•  Condition : Cond-6-2 (An infusion error Empty Reservoir is detected

during the ongoing infusion process.)
•  Action : E-RequestBolus (Request for a bolus dose by pressing a

button)
–  Currently the UPPAAL model consists of approximately 50 states,

100 transitions, and 50 user actions and conditions

Formalization of the FDA’s GPCA model

The GPCA State Controller

Formalization of the FDA’s GPCA model

The GPCA State Controller

Formalization of the FDA’s GPCA model

The GPCA State Controller

Environment: User Actions

Environment : Hardware Conditions

Cond-6-3 implies “An infusion error Empty Reservoir is
detected during the ongoing infusion process”

Formalization of the Safety Requirements

•  Safety requirements are translated into temporal logic formula using the
UPPAAL query language.

•  Example of Safety requirement formalization
–  No bolus dose shall be possible during the POST

•  A[] (! (POST.Post-In-Progress && ISSM.BolusRequest))
–  No normal bolus doses should be administered when the pump is alarming (in an

error state).
•  A[](! (ISSM.BolusRequest && CDR.Alrm-UnknownDrug))

–  The pump shall issue an alert if paused for more than t minutes
•  (ISSM.InfusionPaused && x1 > MAX-PAUSED-T)

-> ISSM.Alrm-TooLongInfusionPause
–  If the calculated volume of the reservoir is y ml, and an infusion is in progress, an

Empty Reservoir alarm shall be issued.
•  (ISSM.Infusion-NormalOperation && Cond-6-3== true)

-> ISSM.Alrm-EmptyReservoir

Formalization of the Safety Requirements

•  Not all 97 safety requirements can be translated into temporal logic formula.
•  Categorization of the safety requirements.

Category 1) A safety requirement can be formalized and verified in the UPPAAL
model. (~20 out of 97 requirements)

•  No bolus dose shall be possible during the POST
•  The pump shall issue an alert if paused for more than t minutes

Category 2) A safety requirement can be formalized, but the GPCA model needs
additional information to verify it. (~23 out of 97 requirements)

•  If the suspend occurs due to a fault condition, the pump shall be stopped immediately
without completing the current pump stroke.

Formalization of the Safety Requirements

•  Not all safety requirements can be translated into temporal logic formula.
•  Categorization of the safety requirements.

Category 1) A safety requirement can be formalized and verified in the UPPAAL
model. (~20 out of 97 requirements)

•  No bolus dose shall be possible during the POST
•  The pump shall issue an alert if paused for more than t minutes

Category 2) A safety requirement can be formalized, but the GPCA model needs
additional information to verify it. (~23 out of 97 requirements)

•  If the suspend occurs due to a fault condition, the pump shall be stopped immediately
without completing the current pump stroke.

Category 3) A safety requirement cannot be formalized, but can be validated at the
implementation level. (~31 out of 97 requirements)

•  The flow rate for the bolus dose shall be programmable.
Category 4) A safety requirement cannot be formalized because the statement is too

vague or related to the environment of the GPCA model. (~23 out of 97
requirements)

•  Flow discontinuity at low flows should be minimal (“minimal” is not clear).
•  A key that is depressed shall not be identified as a distinct key press for a period of t

seconds (related to UI).

Part 2: Implementation

GPCA Safety Requirements
GPCA Model

(Simulink/Stateflow)

Manual translation Manual translation

UPPAAL Queries UPPAAL Model

Formal Verification

Verification Result (Yes/No)

Code-Synthesis
(TIMES tool)

Manual
Implementation

External Channels
Clock Source

Glue-Code Platform-Independent Code
(C code)

Code-Interfacing
Compilation

Executable Image
of the target platform Validation

Test sequences
Test sequences

Model Trace

Implementation
Trace Validation Result

Code Synthesis

•  Advantages of automated implementation
– An automated implementation improves the

quality of embedded software by preserving
the properties of model verification.

•  Practical obstacles in automated
implementation
– There is a gap between abstract model and

implementation

TIMES
(Tool for Modeling and Implementation of Embedded Systems)
•  TIMES is a tool set for modeling, schedulability analysis, synthesis of

executable code:
◦  Modeling – timed automata extended with tasks
◦  Analysis – simulator and model checker of UPPAAL
◦  Code synthesis – from timed automata model to C-code for either

Brick OS or platform-independent

GPCA Implementation Testbed

GPCA Implementation
(Beagleboard-OMAP 3530)

TCP/IP Connection
(to Tester)

User Interface

Sensor/Actuator
Controller

(Atmega1281)

RS232 Connection
(to Controller)

• We note that the Android UI design is motivated from CADD –Solis Ambulatory
Infusion System. The functionalities are instantiated from the GPCA model.

Gap: Synchrony Assumption in Modeling
•  Synchrony Assumption

–  The program reacts to external events
instantaneously.

–  Pros: greatly simplifies formal analysis
of real-time systems.

–  Cons: real systems cannot guarantee
the assumption due to computation
delay.

read_input(ia)

read_time(x) input_trans(x,ia)

write_output (oa)

output_trans(x,oa)

Computation Phase

External Event

Real-time
1.  Read Time
2.  Read Input
3.  Input-Transition
4.  Write Output
5.  Output-Transition

c Abstract Model

Concrete
Implementation

Types of the GPCA Pump Source Code
1.  GPCA model code (Platform-independent)

–  GPCA model is synthesized into C-code using TIMES tool.
–  This code implements control-flow of the GPCA model depending

on user-action and hardware conditions.

2.  Glue code to interface to the target platform (Platform-
dependent)
–  Clock implementation using the target platform APIs.
–  Environmental interface (for user and GPCA hardware).

3.  Code for abstracted functionalities
–  Pump-motor driving code on transition to Infusion-Normal-Operation

to inject drug to patient (e.g., providing electrical signal to the pump
motor)

–  Code for updating dose rate on ChangeDoseRate state (e.g.,
maintaining variables for dose rate that is updated by user request)

Part 3: Validation
•  Safety Requirement : The pump shall issue an alarm if paused for more then t minutes

<Injecting drugs>

Pause button!

Yes, Pause!

Alarm?

<Stop infusion
Session>

<Model Trace> <Implementation Trace>

The Tester screenshot

The GPCA UPPAAL model
transformed from FDA’s GPCA model

(Infusion Session Submachine)

Baxter PCA II Syringe Pump Abbott/Hospira Lifecare 4100 PCA PLUS II

Challenge: time & i/o determinism

•  How to ensure that a target platform correctly executes
the generated code?

•  What should be the notion of correctness?

Model

Platform Independent
Code

Platform Independent
Code

Platform Dependent
Code Glue-Code

Approach: Infusion Pump Virtual Machine

Output
Device1

Input
Device1

Model

IPVM Code

SOF

IPVM-Code

Input

Output 1

Code Execution

Interpreter Interface

Input
Interface

<Infusion Pump A> <Infusion Pump B>

Output
Interface

Platform Independent Part

Platform Dependent Part
Output

Device2
Input

Device2

SOF

IPVM Code
Interpreter Interface

Input
Interface

Output
Interface

Output 2

Current and Future Work

•  Refine and complete the development…
–  Extend requirements to include security & privacy requirements

•  Identify generic-platform dependent & specific-platform
dependent glue code
–  How much need to be redone with a different pump hardware

•  Assurance/safety cases for the GPCA reference
implementation
–  Mock FDA submission

Assurance Cases

•  To construct an assurance
case we need to:
–  make an explicit set of claims

about the system
–  produce the supporting

evidence
–  provide a set of arguments

that link the claims to the
evidence

–  make clear the assumptions
and judgments underlying the
arguments

•  Safety case is a special kind:
–  Claims are limited to safety

Goal

Strategy

Evidence

Sub-Goal Sub-Goal

Evidence

Context

The GPCA Safety Argument

The GPCA Safety Argument

Current Work

•  Define a pattern for model-driven
development approaches (MDD pattern)

•  How to identify gaps in (GPCA) assurance
cases

•  How to evaluate (GPCA) assurance cases

Assurance Case Patterns
•  Extended

notation
to represent
patterns

•  Each pattern needs to
be appropriately
documented

Indicates
possible
alternatives

MDD pattern (from-to pattern)

Mapping the Model-Based Approach to the MDD
pattern

(4)
validating the

implementation

(1)
modeling the

system

(3)
transformation the model
into an implementation

(2)
verifying this

model

The PCA Safety Case – Instance of the MDD
pattern

•  Separate safety argument from confidence argument
•  Safety argument

–  Reasoning about safety of the system
•  E.g.: why this hazard sufficiently unlikely to occur? Does the testing

results show that?

•  Confidence argument
–  Reasoning about confidence in safety argument, assumptions,

evidence
•  E.g.: is that testing exhaustive? Is there sufficient confidence in the

testing? Is the model checking tool trustworthy?

Confidence Arguments

•  We need a mechanism to
–  Systematically construct confidence arguments
–  Identify safety gaps (assurance deficits)

•  Generalize experience from GPCA case study
–  Identify common characteristics of concepts needed in

confidence argument
–  Summarize relationship between the concepts in a map

•  We target trustworthiness
•  Another aspect is appropriateness, which can be handled similarly

Confidence Arguments Construction

Common Characteristics Map

Instantiate the common
characteristics map

AND

CCMap Instantiation
•  Given a safety

argument element
–  pick the corresponding

map node
–  Unroll the map
–  Find affected map nodes,

repeat The Safety Argument
Context or Evidence

The common
characteristics map

Instantiated CCMap

Generate Confidence Argument
•  Near-isomorphic

structure

Identify safety gaps
•  Look for branches that

do not end with
evidence nodes

Evaluate the Safety Argument

•  Assurance cases are, by their nature, often subjective.
•  One of the purposes of assurance case development,

therefore, is to facilitate mutual acceptance of this subjective
position.

•  The goal of assurance case evaluation, therefore, is to assess
if there is a mutual acceptance of the subjective position.

•  Need an approach/method
–  Experts should only be required to express their opinions about the

basic elements in argument structures (e.g., assumptions,
evidences)

–  A systematic mechanism should provide a way to aggregate the
opinions to communicate a message about the argument overall
sufficiency.

•  The proposed method consists of two steps
–  Step 1: Assign degree of belief in the sufficiency and

insufficiency of the basic elements of the argument
–  Step 2: Aggregation

•  Starting from the leaves,
–  aggregate the degree of beliefs in the sufficiency/insufficiency in the

premises (e.g., the evidence)
–  to obtain the degree of belief in the sufficiency/insufficiency in the

conclusion (i.e., the goal).
•  Repeat the process until the top-level goal has been reached

Evaluate the Safety Argument

•  The argumentation type

How to evaluate Safety Argument

Ev
1

Ev
2 Ev1 Ev2 Ev2

Ev
1

Ev1 Ev1
Ev2

Case #1 Case #2 Case #3 Case #4

Ev1

G1

Ev2

Alternative Disjoint Overlap Containment

Medical-Device Plug-and-Play�

•  Medical devices gaining
communication capabilities !

•  Devices still operate
independently

•  Standardized interaction
between devices non existent

•  Full benefit of communication
capabilities not being realized

Characteristics�

MD PnP: Interoperable medical devices based
on plug-n-play!

Vendor neutrality based on open medical device
interfaces

www.mdpnp.org�

•  Improve Patient safety
•  Safety interlocks
•  Complete, accurate

medical records
•  Reduce errors
•  Context awareness
•  Rapid deployment

Advantages�

Current!

Future!

Integrated Clinical Environment (ICE)
•  ASTM Standard F2761-2009 for ICE

defines a high-level architecture and
functional concept

•  Subsequent standards are intended
to provide specific functional and
interfacing requirements for
components

•  The ICE architecture standard is the
focal point for FDA�s evaluation of
MAP concepts in future medical
systems

–  A key element of this evaluation is
moving from regulation of �systems
as a whole� to component-wise
regulation

Ice Equipment
Interface (EI)
I1

Network Controller (NC)

Native
EI-Compliant
Physical
Device

Ice Equipment
Interface (EI)
I3

EI
Adapter

Physical
Device

EI
Adapter

Physical
Device

App
A1

App
An

App
A2

…

Supervisor

ICE EI Interface Description Language

ICE App Code Language / Virtual Devices

PCA Pump
(with patient button)

Supervisor

Monitoring system

 Nurse call

 Patient

Network
Controller

ADAPTER

ADAPTER

PCA Closed-loop System
•  Goal: Improve the safety of PCA

uses
•  Approach: Integrate monitors

with an intelligent “controller” to:
–  Detect respiratory disturbance
–  Safety lock over infusion
–  Activate nurse-call

Virtual Medical Devices (VMD)
•  MD PnP enables the concept of Virtual Medical Devices:

–  A set of medical devices coordinating over a network for clinical
scenario.

•  VMD does not physically exist until instantiated at a hospital.
•  The Medical Device Coordination Framework (MDCF) is

prototype middleware for managing the correct composition of
medical devices into VMD.

Device Coordination
Algorithm

+
Medical Device Types

=
Virtual Medical Device

(VMD)

MDCF/MIDAS
•  Clinician selects appropriate

VMD
•  MDCF binds appropriate

devices into VMD instance

MDCF displays
VMD GUI for
clinician

•  Safety analysis of the VMD model relies on assumptions
about
–  Devices that comprise the VMD
–  Interoperability infrastructure

•  Current regulatory approach:
–  Certify each instantiation of VMD app

•  fixed medical devices, network, middleware, etc.

•  Alternative approach:
–  Certify VMD app based on abstract interfaces
–  Certify devices on interface satisfaction
–  System can use any certified component

Certification of VMD App

Traditional safety critical systems...

Aerospace

Nuclear

Automotive

System Integration
In other safety critical domains, there is a typically a prime contractor that is responsible for
integration and system-level verification and validation.

!  Integration is performed before
deployment with full knowledge and
behavior of components being
integrated

!  Integrator has expert-level technical
knowledge of components & system
behavior

!  Responsible for overall system
!  Verification & Validation
!  Safety arguments
!  Certification

System Integration

ConOps

Requirements

Design

Subsystems
Implementation

Integration

Systems
V & V

Deployment

In other safety critical domains, there is a typically a prime contractor that is responsible for
integration and system-level verification and validation.

End to end
process
managed by
prime
contractor.

System integration and V & V is
done before system is delivered to
the customer.

VMD Development & Assembly

ConOps

Requirements

Design

Impl / V & V

VMD App
Developer VMD Platform

Manufacturer

 Medical Device
Manufacturer

Market

Deployment

VMD Instance
Assembly

Performed by
clinical staff

App Execution
(dynamic formation of
MAP constituted device) Performed by

runtime
environment
of VMD

VMD Characteristics
In other safety critical domains, there is a
typically a prime contractor that is
responsible for integration and system-level
verification and validation.

!  Integration is performed before
deployment with full knowledge and
behavior of components being
integrated

!  Integrator has expert-level technical
knowledge of components & system
behavior

!  Responsible for overall system
!  Verification & Validation
!  Safety arguments
!  Certification

With VMDs, there is no prime contractor
that is responsible for integration and
system-level verification and validation.

!  Assembly is performed after deployment
!  Assembler (hospital staff) does not have

expert-level technical knowledge of
components & system behavior

!  App developer is responsible for overall
system safety arguments

!  Platform services (compatibility checks)
assist in determining at app launch
time if platform and attached devices
satisfy requirements of app

!  The app�s directions for assembly of the
platform constituted device are stated
only in terms of properties/
capabilities that are exposed on the
interfaces of the platform and devices.

•  “pair-wise” approval
–  Approve every possible permutation of devices forming a

composite medical system
–  It is simply not viable

•  “component-wise” approval
–  Approve each system component

•  “component x is safe for its intended use in its intended use
environment”

•  Part of component x’s intended use is to interacts with other
components according to their intended use

Regulatory Process

Pairwise Approval / Certification
Example �interoperable� device ecosystem 3 different (model/manufacturer) SpO2
monitors, 3 different (model/manufacturer) PCA infusion pumps:

Sensors Pumps

 S1

 S2

 S3

 P1

 P2

 P3

Certification or
approval relationship

Each sensor must be approved or
certified for use with each pump and
vice versa. This is burdensome for
manufacturers and regulators

Interface-based approval / certification
Example �interoperable� device ecosystem 3 different (model/manufacturer) SpO2
monitors, 3 different (model/manufacturer) PCA infusion pumps:

Sensors Pumps

 S1

 S2

 S3

 P1

 P2

 P3

Certification or
approval relationship

Each sensor (or pump) only needs certification or
approval w.r.t. the interface spec. Additionally, the
ecosystem can grow without forcing
recertification (or re-approval) of previously
analyzed devices

 IS IP

Interoperable
Sensor
Spec

Interoperable
Pump
Spec

Composition of sensor satisfying IS and pump
satisfying IP is shown to be safe and effective

•  The assurance case for a system of systems would be
an assurance case of assurance cases (i.e., tree of
trees)

Modular Assurance Case

Patient

Device

Adapter

Device

Adapter

Device

Network Controller

Supervisor Data
Logger

Caregiver

External
Network

Physical Connection to Patient

Patient-Centered
Data Network

Caregiver’s User Interface

fig 1

Argument over all identified
safety related functions of
{System X}

ArgOverFunctions

IndependenceArg

All functions are
independent

FunctionsInd

FnASafe
Function A operation
is acceptably safe

FnBArgument

Function B operation
is acceptably safe

FnBSafe

Safety Argument for
Function A

FnAArgument

Function C operation
is acceptably safe

FnCSafe

Safety Related
functions of
{System X}

SRFunctions

SysAccSafe
{System X} is
acceptably safe

Modular Assurance Case --Example

Module
Reference

Public Goal

‘Away’
Goal

–  An assurance case for the supervisor
–  An assurance case for the Network Controller
–  An assurance case for each device
–  An assurance case for each virtual medical device (VDM) app

•  It is safe
•  It is compliant with VDM interfaces

Modular Assurance Case

Patient

Device

Adapter

Device

Adapter

Device

Network Controller

Supervisor Data
Logger

Caregiver

External
Network

Physical Connection to
Patient

Patient-Centered
Data Network

Caregiver’s User
Interface

The network controller safety case

•  The top part

The network controller safety case

•  In order for assurance cases to work in practice,
we need to
–  Develop effective ways to construct them
–  Systematically assess the arguments

•  Based on our experience with the GPCA case
study
–  MDD pattern
–  The safety gaps identification
–  Evaluation mechanism

•  Assurance cases for MDPnP
–  Construct a modular assurance case (assurance case of

assurance cases)

Summary

•  High-confidence medical software systems
–  Model-based development
–  Open source reference implementation of GPCA (Generic Patient-

Controlled Analgesia) infusion pump
–  Pacemaker and heart modeling and analysis
–  Mental models

•  Medical device interoperability
–  Security and Privacy

•  Smart alarms & clinical decision support
•  Physiological closed-loop systems

–  Safe controllers
•  Assurance and Certification

–  Evidence-based certification
–  Blackbox recorder for medical device

MCPS Research at PRECISE Center

MCPS Team Members
•  Penn, SEAS

–  Insup Lee (PI)
–  Rajeev Alur
–  Rahul Mangharam
–  George Pappas
–  Rita Powell
–  Oleg Sokolsky

•  Penn, UPHS/SoM
–  William Hanson, III, MD
–  Margaret Mullen-Fortino, RN
–  Soojin Park, MD
–  Victoria Rich, RN, PhD

•  Penn, Sociology, SAS
–  Ross Koppel

•  MGH/CIMIT
–  Julian Goldman, MD

•  Minnesota
–  Mats Heimdahl
–  Nicholas Hopper
–  Yongdae Kim
–  Michael Whalen

•  Waterloo
–  Sebastian Fischmeister

•  Collaborators
–  John Hatcliff, KSU
–  Paul Jones, FDA
–  Sandy Weininger, FDA
–  Zhang Yi, FDA

•  CPS: Large: Assuring the Safety, Security and Reliability of Medical Device
Cyber Physical Systems (NSF CNS-1035715)

•  NSF FDA Scholar In Residence (NSF CNS-1042829)

•  Affiliated Project: Medical Device NIH/NIBIB Quantum Grant: Development of a
Prototype Healthcare Intranet for Improved Health Outcomes (PI: Julian
Goldman)

•  Domain knowledge comes from our collaborators at the
UPenn Hospital and MD PnP program at CIMIT
–  Julian Goldman, MD
–  Margaret Mullen-Fortino, RN
–  Soojin Park, MD

•  VMD concepts are developed in collaboration with KSU
(John Hatcliff) and MD PnP Quantum (Julian Goldman)
project

•  Some of the slides are courtesy of Julian Goldman, John
Hatcliff, Oleg Sokolsky, and Andrew King

•  Work support by NSF CPS and NIH grants

Acknowledgements

THANK!YOU!!

http://precise.seas.upenn.edu

