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Assurance Cases for Generic PCA 
Reference Implementation and Beyond 



Miniaturization 
• Implantable devices 
• Ingestible sensors 

Interoperation 
• Executable clinical 
scenarios 

• Safety interlocks 

Teleoperation 
• Tele-ICU 
• Robotic surgery 

Autonomy 
• Smart alarms 
• Context-sensitive 
decision support 

• Physiological closed 
loop control 

Trends in Medical Cyber-Physical Systems 
(MCPS) 



MCPS Research Challenges (partial list) 
•  High-confidence medical device software 

systems (HCMDSS) 
–  Model-based and evidence-based 

development 

–  Patient modeling and simulation 

–  User-centered design 

•  Medical device integration and 
interoperation 

•  Adaptive patient-specific algorithms 

•  Incremental and compositional methods 
for certifiable assurance and safety 



Safety-Assured Model-Based 
Development of  

GPCA Infusion Pump Software 

BaekGyu Kim, Anaheed Ayoub, Oleg Sokolsky, Insup Lee, 
Paul Jones, Yi Zhang, and Raoul Jetley 



Infusion Pump Safety 

•  During 2005 and 2009, FDA received 
approximately 56,000 reports of 
adverse events associated with the use 
of infusion pumps 
•  1% deaths, 34% serious injuries 
•  87 infusion pump recalls to address 

safety problems 
•  The most common types of problems 

–  Software Defect 
–  User Interface Issues 
–  Mechanical or Electrical Failure 

U.S. Food and Drug Administration, Center for Devices and Radiological Health. White 
Paper: Infusion Pump Improvement Initiative, April 2010 



Generic Infusion Pump (GIP) Project 
•  The Goal of GIP Project 

–  To develop a set of generic infusion 
pump (safety) models and reference 
specification that can be used as a 
reference standard to verify safety 
properties in different classes of 
infusion pumps 

 
•  GIP web site 

•  provide a repository of medical device 
artifacts for use in projects that 
advance the science and practice of 
developing high-confidence medical 
devices, software, and systems, and 

•  establish infusion pump safety 
reference models 

•  Open contribution 
•  http://rtg.cis.upenn.edu/gip.php3 



Generic PCA (GPCA) 
 

•  Generic PCA (Patient Controlled Analgesic) 
Infusion pump 

–  GPCA hazard analysis 
–  GPCA safety requirements 
–  GPCA reference model 

•  Goals 
–  Demonstrate the use of model-based 

development techniques for engineering 
medical device software 

–  Provide a base open-source reference model 
that can be extended and modified to develop 
specific implementations of PCA pump 
software 

–  Provide an example assurance cases for 
medical device 

–  Provide generic test suites (*) 
–  Provide a reasonably complex medical design 

for researchers to use in developing, refining, 
and improving theories and methods needed 
to develop certifiably dependable medical 
devices 

–  http://rtg.cis.upenn.edu/medical/gpca/
gpca.html 

GPCA 

PCA Pump 



Hazard Analysis 

Safety 
Requirements 

Reference 
Model 

Model-Based 
Implementation 

Assurance Case 

Generic PCA (GPCA) Project 

GPCA Hazard 
Analysis 

GPCA Safety 
Requirements 

GPCA Model 



FDA’s GPCA Model 

•  An abstract representation of software used in a typical PCA 
infusion pump. 

•  The model is built in Simulink and Stateflow. 
•  State Controller 

–  Describes a drug administration process such 
 as parameter setting and bolus request. 

•  Alarm Detecting Component 
–  Check hardware conditions and process alarm  

on any hardware failure. 

•  GPCA Environment 
•  User Interface 
•  System model 

•  The GPCA model interacts with pump  
hardware such as motor and sensors  
through the System Model.  

State 
Controller 

The System Architecture of GPCA Model   



FDA’s GPCA Safety Requirements 

•  A minimum set of generic safety requirements that can 
be used to evaluate and verify infusion pump software* 

–  (e.g.) No normal bolus doses should be administered when the 
pump is alarming (in an error state). 

–  (e.g.) If the calculated volume of the reservoir is y ml, and an 
infusion is in progress, an Empty Reservoir alarm shall be 
issued. 

–  (e.g.) The pump shall issue an alert if paused for more than t 
minutes. 

* Raoul Jetley and Paul Jones. Safety Requirements based Analysis of Infusion Pump Software.  
Proceedings of the Workshop on Software and Systems for Medical Devices and Services,  
December 2007. 
 



GPCA reference implementation 
•  FDA initiated 

–  GPCA Safety Requirements 
–  GPCA Model (Simulink/Stateflow) 

•  Goal: Develop a GPCA reference 
implementation 

•  Provide evidence that the 
implementation satisfies the safety 
requirements 
–  Code synthesis 

•  Organize evidence for certification 
–  Safety cases 
–  Confidence cases 

•  All artifacts to be available as open 
source 
–  [AADL case study by KSU] 

Model-Based Development of  
GPCA Reference Implementation 

Safety 
Requirements 

GPCA Model 

Formal Modeling & 
Verification 

Automated 
Implementation 

Testing 

GPCA Reference 
Implementation 



Part 1: Formal Verification Part 

GPCA Safety Requirements 
GPCA Model 

(Simulink/Stateflow) 

Manual translation  Manual translation  

UPPAAL Queries UPPAAL Model 

Formal Verification 

Verification Result (Yes/No) 

Code-Synthesis 
(TIMES tool) 

Manual  
Implementation 

External Channels 
Clock Source 

Glue-Code Platform-Independent Code 
(C code) 

Code-Interfacing 
Compilation 

Executable Image  
of the target platform Validation 

Test sequences 
Test sequences 

Model Trace 

Implementation  
Trace Validation Result 



UPPAAL (UPPsala + AALborg = UPPAAL) 

•  UPPAAL is a tool for Modeling, 
Validation, and Verification 

•  Major functionalities: 
◦  A description language: network of timed 

automata extended with variables. 
◦  A Simulator : validation tool which enables 

examination of possible executions of a 
system. 

◦  A Model-checker: for automatic verification of 
safety properties by reachability analysis of  
the symbolic state-space. 



Formalization of the FDA’s GPCA model 

•  Transform the GPCA model into a network of UPPAAL 
automata 
–  Retain as much of the architecture of the GPCA model as possible 

following a rigorous manual translation process 
–  Maintain one-to-one mapping between states, conditions, user 

actions, and transitions in the two models 
•  State : Alarm-Empty-Reservoir 
•  Condition : Cond-6-2 (An infusion error Empty Reservoir is detected 

during the ongoing infusion process.) 
•  Action : E-RequestBolus (Request for a bolus dose by pressing a 

button) 
–  Currently the UPPAAL model consists of approximately 50 states, 

100 transitions, and 50 user actions and conditions 



Formalization of the FDA’s GPCA model 

The GPCA State Controller 



Formalization of the FDA’s GPCA model 

The GPCA State Controller 



Formalization of the FDA’s GPCA model 

The GPCA State Controller 



Environment: User Actions 



Environment : Hardware Conditions 

Cond-6-3 implies “An infusion error Empty Reservoir is 
detected during the ongoing infusion process” 



Formalization of the Safety Requirements 

•  Safety requirements are translated into temporal logic formula using the 
UPPAAL query language. 

•  Example of Safety requirement formalization  
–  No bolus dose shall be possible during the POST 

•  A[] (! (POST.Post-In-Progress && ISSM.BolusRequest)) 
–  No normal bolus doses should be administered when the pump is alarming (in an 

error state). 
•  A[](! (ISSM.BolusRequest && CDR.Alrm-UnknownDrug)) 

–  The pump shall issue an alert if paused for more than t minutes 
•  (ISSM.InfusionPaused && x1 > MAX-PAUSED-T)  

-> ISSM.Alrm-TooLongInfusionPause 
–  If the calculated volume of the reservoir is y ml, and an infusion is in progress, an 

Empty Reservoir alarm shall be issued. 
•  (ISSM.Infusion-NormalOperation && Cond-6-3== true )   

-> ISSM.Alrm-EmptyReservoir 



Formalization of the Safety Requirements 

•  Not all 97 safety requirements can be translated into temporal logic formula.  
•  Categorization of the safety requirements. 

Category 1) A safety requirement can be formalized and verified in the UPPAAL 
model.  (~20 out of 97 requirements) 

•  No bolus dose shall be possible during the POST 
•  The pump shall issue an alert if paused for more than t minutes 

Category 2) A safety requirement can be formalized, but the GPCA model needs 
additional information to verify it. (~23 out of 97 requirements) 

•  If the suspend occurs due to a fault condition, the pump shall be stopped immediately 
without completing the current pump stroke. 



Formalization of the Safety Requirements 

•  Not all safety requirements can be translated into temporal logic formula.  
•  Categorization of the safety requirements. 

Category 1) A safety requirement can be formalized and verified in the UPPAAL 
model.  (~20 out of 97 requirements) 

•  No bolus dose shall be possible during the POST 
•  The pump shall issue an alert if paused for more than t minutes 

Category 2) A safety requirement can be formalized, but the GPCA model needs 
additional information to verify it. (~23 out of 97 requirements) 

•  If the suspend occurs due to a fault condition, the pump shall be stopped immediately 
without completing the current pump stroke. 

Category 3) A safety requirement cannot be formalized, but can be validated at the 
implementation level. (~31 out of 97 requirements) 

•  The flow rate for the bolus dose shall be programmable. 
Category 4) A safety requirement cannot be formalized because the statement is too 

vague or related to the environment of the GPCA model. (~23 out of 97 
requirements) 

•  Flow discontinuity at low flows should be minimal (“minimal” is not clear). 
•  A key that is depressed shall not be identified as a distinct key press for a period of t 

seconds (related to UI). 



Part 2: Implementation 

GPCA Safety Requirements 
GPCA Model 

(Simulink/Stateflow) 

Manual translation  Manual translation  

UPPAAL Queries UPPAAL Model 

Formal Verification 

Verification Result (Yes/No) 

Code-Synthesis 
(TIMES tool) 

Manual  
Implementation 

External Channels 
Clock Source 

Glue-Code Platform-Independent Code 
(C code) 

Code-Interfacing 
Compilation 

Executable Image  
of the target platform Validation 

Test sequences 
Test sequences 

Model Trace 

Implementation  
Trace Validation Result 



Code Synthesis 

•  Advantages of automated implementation 
– An automated implementation improves the 

quality of embedded software by preserving 
the properties of model verification. 

•  Practical obstacles in automated 
implementation 
– There is a gap between abstract model and 

implementation 



TIMES 
(Tool for Modeling and Implementation of Embedded Systems) 
•  TIMES is a tool set for modeling, schedulability analysis, synthesis of 

executable code: 
◦  Modeling – timed automata extended with tasks  
◦  Analysis – simulator and model checker of UPPAAL 
◦  Code synthesis – from timed automata model to C-code for either 

Brick OS or platform-independent 
 



GPCA Implementation Testbed 

GPCA Implementation 
(Beagleboard-OMAP 3530) 

TCP/IP Connection 
(to Tester) 

User Interface 

Sensor/Actuator  
Controller 

(Atmega1281) 

RS232 Connection 
(to Controller) 

• We note that the Android UI design is motivated from CADD –Solis Ambulatory  
Infusion System. The functionalities are instantiated from the GPCA model.  



Gap: Synchrony Assumption in Modeling 
•  Synchrony Assumption 

–  The program reacts to external events 
instantaneously. 

–  Pros: greatly simplifies formal analysis 
of real-time systems. 

–  Cons:  real systems cannot guarantee 
the assumption due to computation 
delay. 

read_input(ia) 

read_time(x) input_trans(x,ia) 

write_output (oa) 

output_trans(x,oa) 

Computation Phase 

External Event 

Real-time 
1.  Read Time 
2.  Read Input 
3.  Input-Transition 
4.  Write Output 
5.  Output-Transition 

c Abstract Model 

Concrete 
Implementation 



Types of the GPCA Pump Source Code 
1.  GPCA model code (Platform-independent) 

–  GPCA model is synthesized into C-code using TIMES tool. 
–  This code implements control-flow of the GPCA model depending 

on user-action and hardware conditions.  

2.  Glue code to interface to the target platform (Platform-
dependent) 
–  Clock implementation using the target platform APIs. 
–  Environmental interface (for user and GPCA hardware). 

3.  Code for abstracted functionalities 
–  Pump-motor driving code on transition to Infusion-Normal-Operation 

to inject drug to patient (e.g., providing electrical signal to the pump 
motor) 

–  Code for updating dose rate on ChangeDoseRate state (e.g., 
maintaining variables for dose rate that is updated by user request)  



Part 3: Validation 
•  Safety Requirement : The pump shall issue an alarm if paused for more then t minutes 

<Injecting drugs> 

Pause button! 

Yes, Pause! 

Alarm? 

<Stop infusion  
Session> 

<Model Trace>  <Implementation Trace>  

The Tester screenshot 

The GPCA UPPAAL model  
transformed from FDA’s GPCA model  

(Infusion Session Submachine) 



Baxter PCA II Syringe Pump Abbott/Hospira Lifecare 4100 PCA PLUS II 



Challenge: time & i/o determinism 

•  How to ensure that a target platform correctly executes 
the generated code? 

•  What should be the notion of correctness? 

Model 

Platform Independent 
Code 

Platform Independent 
Code 

Platform Dependent 
Code Glue-Code 



Approach: Infusion Pump Virtual Machine 

Output 
Device1 

Input 
Device1 

Model 

IPVM Code 

SOF 

IPVM-Code 

Input 

Output 1 

Code Execution 

Interpreter Interface 

Input 
Interface 

<Infusion Pump A> <Infusion Pump B> 

Output 
Interface 

Platform Independent Part 

Platform Dependent Part 
Output 

Device2 
Input 

Device2 

SOF 

IPVM Code 
Interpreter Interface 

Input 
Interface 

Output 
Interface 

Output 2 



Current and Future Work 

•  Refine and complete the development… 
–  Extend requirements to include security & privacy requirements 

•  Identify generic-platform dependent & specific-platform 
dependent glue code 
–  How much need to be redone with a different pump hardware 

•  Assurance/safety cases for the GPCA reference 
implementation 
–  Mock FDA submission 



Assurance Cases 

•  To construct an assurance  
case we need to: 
–  make an explicit set of claims 

about the system 
–  produce the supporting 

evidence 
–  provide a set of arguments 

that link the claims to the 
evidence 

–  make clear the assumptions 
and judgments underlying the 
arguments 

•  Safety case is a special kind: 
–  Claims are limited to safety 

Goal 

Strategy 

Evidence 

Sub-Goal Sub-Goal 

Evidence 

Context 



The GPCA Safety Argument 



The GPCA Safety Argument 



Current Work 

•  Define a pattern for model-driven 
development approaches (MDD pattern) 

•  How to identify gaps in (GPCA) assurance 
cases 

•  How to evaluate (GPCA) assurance cases 



Assurance Case Patterns 
•  Extended 

notation 
to represent  
patterns 

•  Each pattern needs to 
be appropriately 
documented 

Indicates 
possible 
alternatives 



MDD pattern (from-to pattern) 



Mapping the Model-Based Approach to the MDD 
pattern 

(4) 
validating the 

implementation 

(1) 
modeling the 

system 

(3) 
transformation the model 
into an implementation 

(2) 
verifying this 

model 



The PCA Safety Case – Instance of the MDD 
pattern 



•  Separate safety argument from confidence argument 
•  Safety argument 

–  Reasoning about safety of the system 
•  E.g.: why this hazard sufficiently unlikely to occur? Does the testing 

results show that? 

•  Confidence argument 
–  Reasoning about confidence in safety argument, assumptions, 

evidence 
•  E.g.: is that testing exhaustive?  Is there sufficient confidence in the 

testing?  Is the model checking tool trustworthy? 

Confidence Arguments 



•  We need a mechanism to 
–  Systematically construct confidence arguments 
–  Identify safety gaps (assurance deficits) 

•  Generalize experience from GPCA case study 
–  Identify common characteristics of concepts needed in 

confidence argument 
–  Summarize relationship between the concepts in a map 

•  We target trustworthiness 
•  Another aspect is appropriateness, which can be handled similarly 

Confidence Arguments Construction 



Common Characteristics Map 



Instantiate the common 
characteristics map 

AND 

CCMap Instantiation 
•  Given a safety 

argument element 
–  pick the corresponding 

map node 
–  Unroll the map 
–  Find affected map nodes, 

repeat The Safety Argument 
Context or Evidence 

The common 
characteristics map 



Instantiated CCMap 



Generate Confidence Argument 
•  Near-isomorphic 

structure 



Identify safety gaps 
•  Look for branches that 

do not end with 
evidence nodes 



Evaluate the Safety Argument 

•  Assurance cases are, by their nature, often subjective.  
•  One of the purposes of assurance case development, 

therefore, is to facilitate mutual acceptance of this subjective 
position. 

•  The goal of assurance case evaluation, therefore, is to assess 
if there is a mutual acceptance of the subjective position. 

•  Need an approach/method 
–  Experts should only be required to express their opinions about the 

basic elements in argument structures (e.g., assumptions, 
evidences) 

–  A systematic mechanism should provide a way to aggregate the 
opinions to communicate a message about the argument overall 
sufficiency. 



•  The proposed method consists of two steps 
–  Step 1: Assign degree of belief in the sufficiency and 

insufficiency of the basic elements of the argument 
–  Step 2: Aggregation 

•  Starting from the leaves,  
–  aggregate the degree of beliefs in the sufficiency/insufficiency in the 

premises (e.g., the evidence)  
–  to obtain the degree of belief in the sufficiency/insufficiency in the 

conclusion (i.e., the goal). 
•  Repeat the process until the top-level goal has been reached 

Evaluate the Safety Argument 



•  The argumentation type 

How to evaluate Safety Argument 

Ev
1 

Ev
2 Ev1 Ev2 Ev2 

Ev
1 

Ev1 Ev1 
Ev2 

Case #1       Case #2              Case #3      Case #4 

Ev1 

G1 

Ev2 

Alternative        Disjoint            Overlap    Containment 





Medical-Device Plug-and-Play�

•  Medical devices gaining 
communication capabilities !

•  Devices still operate 
independently 

•  Standardized interaction 
between devices non existent 

•  Full benefit of communication 
capabilities not being realized 

Characteristics�

MD PnP: Interoperable medical devices based 
on plug-n-play! 

Vendor neutrality based on open medical device 
interfaces 

www.mdpnp.org�

•  Improve Patient safety 
•  Safety interlocks 
•  Complete, accurate 

medical records 
•  Reduce errors 
•  Context awareness 
•  Rapid deployment 

Advantages�

Current!

Future!



Integrated Clinical Environment (ICE) 
•  ASTM Standard F2761-2009 for ICE 

defines a high-level architecture and 
functional concept 

•  Subsequent standards are intended 
to provide specific functional and 
interfacing requirements for 
components 

•  The ICE architecture standard is the 
focal point for FDA�s evaluation of 
MAP concepts in future medical 
systems 

–  A key element of this evaluation is 
moving from regulation of �systems 
as a whole� to component-wise 
regulation 

Ice Equipment 
Interface (EI) 
I1 

Network Controller (NC) 

Native 
EI-Compliant 
Physical  
Device 

Ice Equipment 
Interface (EI) 
I3 

EI 
Adapter 

Physical  
Device 

EI 
Adapter 

Physical  
Device 

App 
A1 

App 
An 

App 
A2 

… 

Supervisor 

ICE EI Interface Description Language 

ICE App Code Language / Virtual Devices 



PCA Pump 
(with patient button) 

Supervisor 

Monitoring system 

 Nurse call 

 Patient 

Network 
Controller 

ADAPTER 

ADAPTER 

PCA Closed-loop System 
•  Goal: Improve the safety of PCA 

uses 
•  Approach: Integrate monitors 

with an intelligent “controller” to: 
–  Detect respiratory disturbance  
–  Safety lock over infusion 
–  Activate nurse-call 



Virtual Medical Devices (VMD) 
•  MD PnP enables the concept of Virtual Medical Devices: 

–  A set of medical devices coordinating over a network for clinical 
scenario. 

 

•  VMD does not physically exist until instantiated at a hospital.  
•  The Medical Device Coordination Framework (MDCF) is 

prototype middleware for managing the correct composition of 
medical devices into VMD. 

Device Coordination 
Algorithm 

+ 
Medical Device Types 

= 
Virtual Medical Device 

(VMD) 

MDCF/MIDAS 
•  Clinician selects appropriate 

VMD 
•  MDCF binds appropriate 

devices into VMD instance 

MDCF displays 
VMD GUI for 
clinician 



•  Safety analysis of the VMD model relies on assumptions 
about 
–  Devices that comprise the VMD 
–  Interoperability infrastructure 

•  Current regulatory approach: 
–  Certify each instantiation of VMD app  

•  fixed medical devices, network, middleware, etc. 

•  Alternative approach: 
–  Certify VMD app based on abstract interfaces 
–  Certify devices on interface satisfaction 
–  System can use any certified component 

Certification of VMD App 



Traditional safety critical systems... 

Aerospace 

Nuclear 

Automotive 



System Integration 
In other safety critical domains, there is a typically a prime contractor that is responsible for 
integration and system-level verification and validation. 

!  Integration is performed before 
deployment with full knowledge and 
behavior of components being 
integrated 

!  Integrator has expert-level technical 
knowledge of components & system 
behavior 

!  Responsible for overall system 
!  Verification & Validation 
!  Safety arguments 
!  Certification  



System Integration 

ConOps 

Requirements 

Design 

Subsystems  
Implementation 

Integration 

Systems 
V & V 

Deployment 

In other safety critical domains, there is a typically a prime contractor that is responsible for 
integration and system-level verification and validation. 

End to end 
process 
managed by 
prime 
contractor. 

System integration and V & V is 
done before system is delivered to 
the customer. 



VMD Development & Assembly 

ConOps 

Requirements 

Design 

Impl / V & V 

VMD App 
Developer  VMD Platform 

Manufacturer 

 Medical Device 
Manufacturer 

Market 

Deployment 

VMD Instance 
Assembly 

Performed by 
clinical staff 

App Execution 
(dynamic formation of 
MAP constituted device) Performed by 

runtime 
environment 
of VMD 



VMD Characteristics 
In other safety critical domains, there is a 
typically a prime contractor that is 
responsible for integration and system-level 
verification and validation. 

!  Integration is performed before 
deployment with full knowledge and 
behavior of components being 
integrated 

!  Integrator has expert-level technical 
knowledge of components & system 
behavior 

!  Responsible for overall system 
!  Verification & Validation 
!  Safety arguments 
!  Certification  

With VMDs, there is no prime contractor 
that is responsible for integration and 
system-level verification and validation. 

!  Assembly is performed after deployment  
!  Assembler (hospital staff) does not have 

expert-level technical knowledge of 
components & system behavior 

!  App developer is responsible for overall 
system safety arguments 

!  Platform services (compatibility checks) 
assist in determining at app launch 
time if platform and attached devices 
satisfy requirements of app 

!  The app�s directions for assembly of the 
platform constituted device are stated 
only in terms of properties/
capabilities that are exposed on the 
interfaces of the platform and devices.   



•  “pair-wise” approval 
–  Approve every possible permutation of devices forming a 

composite medical system 
–  It is simply not viable 

•  “component-wise” approval 
–  Approve each system component 

•  “component x is safe for its intended use in its intended use 
environment” 

•  Part of component x’s intended use is to interacts with other 
components according to their intended use 

Regulatory Process 



Pairwise Approval / Certification 
Example �interoperable� device ecosystem 3 different (model/manufacturer) SpO2 
monitors, 3 different (model/manufacturer) PCA infusion pumps: 

Sensors Pumps 

   S1 

   S2 

   S3 

   P1 

   P2 

   P3 

Certification or 
approval relationship 

Each sensor must be approved or 
certified for use with each pump and 
vice versa. This is burdensome for 
manufacturers and regulators  



Interface-based approval / certification 
Example �interoperable� device ecosystem 3 different (model/manufacturer) SpO2 
monitors, 3 different (model/manufacturer) PCA infusion pumps: 

Sensors Pumps 

   S1 

   S2 

   S3 

   P1 

   P2 

   P3 

Certification or 
approval relationship 

Each sensor (or pump) only needs certification or 
approval w.r.t. the interface spec. Additionally, the 
ecosystem can grow without forcing 
recertification (or re-approval) of previously 
analyzed devices 

 IS  IP 

Interoperable 
Sensor 
Spec 

Interoperable 
Pump 
Spec 

Composition of sensor satisfying IS and pump 
satisfying IP is shown to be safe and effective 



•  The assurance case for a system of systems would be 
an assurance case of assurance cases (i.e., tree of 
trees) 

Modular Assurance Case 

Patient 

Device 

Adapter 

Device 

Adapter 

Device 

Network Controller 

Supervisor Data 
Logger 

Caregiver 

External 
Network 

Physical Connection to Patient 

Patient-Centered  
Data Network 

Caregiver’s User Interface 



fig 1

Argument over all identified
safety related functions of
{System X}

ArgOverFunctions

IndependenceArg

All functions are
independent

FunctionsInd

FnASafe
Function A operation
is acceptably safe

FnBArgument

Function B operation
is acceptably safe

FnBSafe

Safety Argument for
Function A

FnAArgument

Function C operation
is acceptably safe

FnCSafe

Safety Related
functions of 
{System X}

SRFunctions

SysAccSafe
{System X} is
acceptably safe

 

Modular Assurance Case --Example 

Module 
Reference 

Public Goal 

‘Away’ 
Goal 



–  An assurance case for the supervisor 
–  An assurance case for the Network Controller 
–  An assurance case for each device 
–  An assurance case for each virtual medical device (VDM) app  

•  It is safe  
•  It is compliant with VDM interfaces 

Modular Assurance Case 

Patient 

Device 

Adapter 

Device 

Adapter 

Device 

Network Controller 

Supervisor Data 
Logger 

Caregiver 

External 
Network 

Physical Connection to 
Patient 

Patient-Centered  
Data Network 

Caregiver’s User 
Interface 



The network controller safety case 



•  The top part 

The network controller safety case 



•  In order for assurance cases to work in practice, 
we need to 
–  Develop effective ways to construct them 
–  Systematically assess the arguments 

•  Based on our experience with the GPCA case 
study 
–  MDD pattern 
–  The safety gaps identification 
–  Evaluation mechanism 

•  Assurance cases for MDPnP 
–  Construct a modular assurance case (assurance case of 

assurance cases) 

Summary 



•  High-confidence medical software systems 
–  Model-based development 
–  Open source reference implementation of GPCA (Generic Patient-

Controlled Analgesia) infusion pump 
–  Pacemaker and heart modeling and analysis 
–  Mental models 

•  Medical device interoperability 
–  Security and Privacy 

•  Smart alarms & clinical decision support 
•  Physiological closed-loop systems 

–  Safe controllers 
•  Assurance and Certification 

–  Evidence-based certification 
–  Blackbox recorder for medical device 

MCPS Research at PRECISE Center 



MCPS Team Members 
•  Penn, SEAS 

–  Insup Lee (PI) 
–  Rajeev Alur 
–  Rahul Mangharam 
–  George Pappas 
–  Rita Powell 
–  Oleg Sokolsky 

•  Penn, UPHS/SoM 
–  William Hanson, III, MD 
–  Margaret Mullen-Fortino, RN 
–  Soojin Park, MD 
–  Victoria Rich, RN, PhD 

•  Penn, Sociology, SAS 
–  Ross Koppel 

•  MGH/CIMIT 
–  Julian Goldman, MD 

•  Minnesota 
–  Mats Heimdahl 
–  Nicholas Hopper 
–  Yongdae Kim 
–  Michael Whalen 

•  Waterloo 
–  Sebastian Fischmeister 

•  Collaborators 
–  John Hatcliff, KSU 
–  Paul Jones, FDA 
–  Sandy Weininger, FDA 
–  Zhang Yi, FDA 
 

•  CPS: Large: Assuring the Safety, Security and Reliability of Medical Device 
Cyber Physical Systems (NSF CNS-1035715) 

•  NSF FDA Scholar In Residence (NSF CNS-1042829) 

•  Affiliated Project: Medical Device NIH/NIBIB Quantum Grant: Development of a 
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