
 

Roberto Baldoni 

Università di Roma “La Sapienza” 

IFIG 10.4 WG 2012 winter meeting 

January 27th, La Martinique, France 

Byzantine Fault Tolerance in Dynamic 

Distributed Systems 

1 



Advent of Complex Distributed 
Applications 

 Peer-to-peer 

 Sensor Networks 

 Mobile networks 

 Cloud computing federations 

 Internet supercomputing 

 Smart environments  

 

 

 

2 



World 

Orderly                                                                       Chaotic 

Spectrum of Possible 

System Models 

 

3 

Air traffic Control 

Mobile ad-hoc Systems 

Cloud Computing 

Peer-to-peer 



Uncertainty in Dynamic 

Distributed Systems 

 Static Distributed Systems: 

 Lack of temporal knowledge 

 Failures (including byzantine ones)   

 Unknown communication delays 

 Dynamic Distributed Systems 

 Same issues as in static distributed systems, plus 

 Non-monotonic and unknown size of the system   

 Potentially changing properties of the “universe” 

 Unclear notions of efficiency, effectiveness, scalability 

4 



Distributed Storage Service 

 Distributed Storage Service is one of the fundamental 
abstractions to build dependable applications 

 Main requirements: availability, consistency, robustness 

 

 Modern distributed systems that host storage services are 
exposed to several vulnerabilities: 

 Asynchrony 

 Crash Failures 

 Attacks from malicious processes (i.e. byzantine failures)  

 maintenance procedures produce churn 

 

5 



Object Abstraction: The 

Regular Register 

A register is a shared variable accessed by processes 

through read and write operations 

6 



Regular Register: write() 

 

7 

The writer process pw wants to write the 

value v 

pw sends a broadcast message 

(WRITE, v, sn) 

… in the meanwhile processes join and 

leave the computation 

OBS. Only processes belonging to the computation when pw starts the write and 

that remain in the computation for all the time of the write will maintain the 

updated copy of the register 

Active Processes keeps the state of the computation 

D
is

tr
ib

u
te

d
 S

y
s
te

m
 

A subset of processes participate 

to the register computation 

pw 



BFT storage in Static Distributed Systems 

 State Machine Replication Approach 

 [3] uses 2f + 1 server replicas, and requires that every non-faulty replica agrees to 

process requests in the same order. 

 

 Quorum Based Approach 

 [1] wait-free single-writer/multi-reader atomic register  

 n  3f+1 

 two-phase reading and two-phase writing  

 [2] safe variable with assuming at least 5f replicas  

  n  5f 

 one-phase reading and one-phase writing  

 

 

 

 

 

 

 

[1] Aiyer A. S., Alvisi L., Bazzi R. A., “Bounded Wait-Free Implementation of Optimally resilient  Byzantine Storage without 

(Unproven) Cryptographic assumptions”, DISC 2007 

[2] Malkhi D., Reiter M.K., “Byzantine Quorum Systems”, Distributed Computing  1998 

[3] Schneider Fred B. , “Implementing Fault-Tolerant Services Using the State Machine Approach”, ACM Computing Surveys 

1990 

 

8 



Storage Service in Dynamic Distributed Systems 

  [1] presents a Reconfigurable Atomic Memory for Basic Object (RAMBO) 

on top of a distributed systems where processes can join or fail by 

crashing. 

 Based on Consensus  

 

 [2] shows that a crash resilient atomic register can be realized without 

consensus, and thus implementable on a fully asynchronous distributed 

system 

 Assumption of majority of correct processes in any reconfiguration 

 

 [3] provides a crash-resilient regular register in the presence of churn 

 

9 

[1] Lynch, N. and Shvartsman A., “RAMBO: A Reconfigurable Atomic Memory Service for Dynamic Networks”, DISC 2002 

[2] Aguilera M. K., Keidar I., Malkhi D., Shraer A., “Dynamic atomic storage without consensus”, PODC 2009 

[3] Baldoni R., Bonomi S., Kermarrec A.M., Raynal M., “Implementing a Register in a Dynamic Distributed System”, ICDCS 

2009 



Related work 

1. BFT Registers in Distributed Systems with churn 

1. Single-writer/multi-reader Regular Register [1] 

1. Assumption of bounded execution time for each operation 

2. Bound on the churn depending on the duration of each operation 

 

2. multi-writer/multi-reader safe register [2] 

1. Synchronous System prone to continuous churn 

 

 

 

 
[1] Baldoni R., Bonomi S., SoltaniNezhad A., “Brief Announcement: Validity Bound of Regular Registers with Churn and 

Byzantine Processes”, PODC 2011 

[2] Bonomi S., Soltani Nezhad A., “Multi-writer Regular Registers in Dynamic Distributed Systems with Byzantine Failures 

”, TADDS2011 

10 



System Model 

11 

 Composed by a finite 

arbitrary number of processes 

 

 It is dynamic 

 New servers are connected 

along time 

 Servers can be disconnected 



Impossibility of realizing a 

regular register 

 

 

 

 [1] shows that it is not possible to implement a register in a fully 

asynchronous distributed system prone to continuous churn 

 

 Eventual Synchrony Assumption 

 There exist a time t such that any message m broadcast/sent from a process pi, 

at some time t’>t is delivered by time t’+ unless pi leaves the computation 

between t’ and t’+. 

12 

[1] Baldoni R., Bonomi S., Raynal M., “: Implementing a Regular Register in an Eventually Synchronous Distributed System Prone 

to Continuous Churn”, IEEE TPDS 2012 



Computation Model 

 

 

 Clients are not byzantine, but 

can crash 

 No information about register 

state 

 Clients trigger read() and write() 

operations 

Write (v) Read () 

13 



Computation Model 

 Initially n servers are part of the register 

computation 

 

 Servers do not know how is currently in 

the computation 

 

 Up to f byzantine failures 

 

 Servers maintain locally a copy of the 

register value 

 

 Alternating periods of churn and stability 

 No stable processes 

 In churn periods the servers set is 

continuously changing 

Write (v) Read () 

v 

v 

v 

v x 

v 
x 

 v 

Join_Server() 

14 



Correct Servers’ Life Cycle 

Active 
Join_Confirmation 

Joining 

Join() 

Leave() Leave() 

Up 

Down 

Servers Computation CS 

Servers System US 

Connect() Disconnect() 

15 



Churn Model 

16 

Tstability Tchurn Tstability Tchurn 

Active Joining 

Servers Computation CS 

Join_Confirmation 

Join() 

Leave() 

|A(t)|  n- J 

|C(t)|  [n,  n- J] 

n = # of servers in the 

computation at time t0 

J = maximum number of 

concurrent joining processes 



Safe Register Specification 

 

 Termination 

 If a correct process (either a client or a server) participating in the 

computation invokes an operation and does not leave the system, it 

eventually returns from that operation 

 

 Validity 

 a read() operation, not concurrent with any write(), returns the last 

written value before its invocation. In the case of concurrency,  a read() 

may return any value. 

 

17 



Issues 
 Byzantine servers 

 Possible collusions to compromise the register state 

 

 Given f faulty servers,  at least 2f+1 values are needed to filter out faulty ones 

 

 Churn 

 The set of replicas maintaining the register value continuously change during 

time 

 

 The current value may disappear after a certain amount of time 

 

 Eventually Synchronous Communications 

 

 write messages can be missed by new servers 

 ack messages can be lost due to servers departures 

 18 



Algorithm 

 General Idea:  

 Read and Join Operations should be as fast as possible (1 

phase) 

 

 Extension of Malkhi-Reiter byzantine quorums [1] to 

distributed system prone to churn 

 Read() and write() operations are performed on a quorum of n-f-J 

servers 

 The join() operation is a particular case of read  

19 

[1] Malkhi D., Reiter M.K., “Byzantine Quorum Systems”, Distributed Computing  1998 



read() and write(v) operations 

20 

  write(v) 

  Client periodically sends the 

value and its timestamp 

  Servers acknowledge the new 

value 

  Client waits for n-f-J ack and 

then ask for confirmation 

  Servers confirm the new value 

 

 

  read() 

  Client periodically ask for the 

current value 

 Active servers reply with a pair  

<v, ts>  

 Client waits for n-f-J replies 

and then select the most 

frequent value 

 

 



Join() Operation 

s1 

s2 

s3 

s4 

s5 

s6 

s7 



Theorem 

 Validity 

 If n  5f + 3J, then a read() operation that is not concurrent 

with any write(),  returns the last value written before the 

read() invocation. 

 

 Termination.  

 Let n  5f +3J. If a process invokes join(), read() or write (), and 

does not leave the system, it eventually terminates its 

operation 

 

 

22 



Correctness (intuition) 

23 

read 

write 

 Quorum size is n-f-J 

 An Opaque Masking quorum 

system (as defined in [1]) exists 

if correct affected servers are 

more than   

 faulty answering to a read + 

 not affected ones 

 

 Considering that joining 

processes are not faulty but 

only temporarily silent, this 

condition is true for n  5f + 3J 

[1] Malkhi D., Reiter M.K., “Byzantine Quorum Systems”, Distributed Computing  1998 

 Validity is guaranteed by the existence of the 

quorum system 

 Termination follows from the eventual synchrony 



Conclusion and future work 

 A safe register can be implemented also in the presence 

of both bounded churn and byzantine servers 

 However… 

 A lot of replicas are needed to cope with this issues 

 

  Some open questions for our future work 

  Can we remove the assumption of bounded f ? 

  Can we handle rational behavior ? 

  Other attacks ? 

 

 Main achievement: churn is a specific type of behavior that 

have to be handled appropriately! 
24 



Thank You! 

Questions?! 

25 


