
A clustering Approach for Web
Vulnerabilities Detection

Mohamed	 Kaâniche

Rim	 Akrout,	 Eric	 Alata,	 Yann	 Bachy,
Anthony	 Dessiatnikoff,	 Vincent	 Nicome?e

Design and
Assessment of application
Level
Intrusion detection systems

IFIP WG 10.4 meeting, Martinique, 26-30 January 2012

Outline

n Context and motivation

n Web vulnerability scanners

n Proposed approach

n Experimental results

n Conclusion

Context
n Web vulnerabilities have become a major threat to

information systems security
– SQL Injections, XPATH, OS commanding, XSS,…
– Lack of sanitization of URL parameters, html form inputs, ...

n Attackers can gain unauthorized access, read/modify
sensitive data, perform DoS attacks, …

Context
n Web vulnerabilities have become a major threat to

information systems security
– SQL Injections, XPATH, OS commanding, XSS,…
– Lack of sanitization of URL parameters, html form inputs, ...

n Attackers can gain unauthorized access, read/modify
sensitive data, perform DoS attacks, …

SQL
injection

Login
Pass

x

User side
<?php include (‘db.php’);
$r=mysql_query(«select*from USER where»
 «login = ‘» .$_GET[‘login’] «’and »
 «login = ‘» .$_GET[‘pass’] «’»);
If (my_sql_fetch_row($r)) include(‘connected.php’);
else include(‘error.php’); ?>

Server side
user

Database

login pass
john 12gh3

vincent uut1p

user inputs SQL request Result

(john; 12gh3) Select * from USER where
login = ‘john’ and pass =‘12gh3’

connected

Select * from USER where
login = ‘me’ and pass =‘1’ or ‘1’=1’

(me; 1’ or ‘1’=1) connected

Techniques to cope with vulnerabilities

n Identification and possible sanitization at runtime of
malicious requests
– Web application Firewalls, IDS

n Static analysis of the source code

n Web vulnerability scanners
– Black box security testing
– identify injection points and generate specially crafted

inputs to detect vulnerabilities

Web vulnerability scanners

n Commercial tools
– WebInspect, AppScan, Acunetix, …

n Open source and publicly available tools
– Skipfish: http://code.google.com/p/skip1ish
– W3aF: http://w3af.sourceforge.net
– Wapiti: http://wapiti.sourceforge.net	 ;	 …

n Several experimental analyses point out the need to
improve the detection efficiency and the automation
capabilities of existing tools
– [Fonseca et al. 2007; PRDC-2007], [Bau et al. 2010; Symp.

Security & Privacy]; [Doupé et al. 2010, DIMVA], etc.

n Research objectives
– contribute to fulfill this gap

Existing approaches
n General principle

– Submit through injection point a few crafted inputs and conclude
about vulnerability existence based on server reponses analysis

n Error pattern matching: W3aF, Wapiti, Secubat
– Search for some predefined error messages

n Similarity analysis of server reponses: skipfish
– 3 requests for each injection point

– a vulnerability exists if the responses associated to R1 and R2
are different and those associated to R1 and R3 are different

n General comments
– Only a few requests are generally submitted (two or three)
– None of the investigated tools provides the requests that

successfully exploit the identified vulnerability

Discussion
n Only a few requests are generally submitted

– two or three

n None of the investigated tools provides the requests that
successfully exploit the identified vulnerability

n Contribution: a new vulnerability detection algorithm based
on the similarity analysis approach:
– Generation of a large number of requests that can be tuned by

the user to potentially achieve a higher coverage of the server
responses space

• Grammars specific to vulnerability classes
– Automatic identification of successful injections based on the

hierarchical clustering of similar server response pages

Proposed approach
n Generate requests that would

likely produce failed execution
pages (rejection pages)
– R1: Randomly generated

login-passwords

Proposed approach
n Generate requests that would

likely produce failed execution
pages (rejection pages)
– R1: Randomly generated

login-passwords
– R2: Syntaxically invalid

injections

Proposed approach
n Generate requests that would

likely produce failed execution
pages (rejection pages)
– R1: Randomly generated

login-passwords
– R2: Syntaxically invalid

injections

n Generate syntaxically valid
injections : R3

Proposed approach
n Generate requests that would

likely produce failed execution
pages (rejection pages)
– R1: Randomly generated

login-passwords
– R2: Syntaxically invalid

injections

n Generate syntaxically valid
injections : R3

n Identify successful injections
based on the similarity
analysis of R3 responses
compared to R1 and R2
responses

Cluster

R1

R2

R3

1st Cluster2nd Cluster

1st Cluster3rd Cluster 4th Cluster

Clusters with only syntactically
valid SQL injections (R3)
identify successfull injections

Algorithm
n Entry point: URL of the web application

Experimental assessment
n WASAPY tool

– Web Application Security Assessment in Python

n Comparative analysis with open source vulnerability
scanners: skipfish, Wapiti, W3af

n Two types of experiments
– Modified applications including specific injected vulnerabilities
– Publicly available vulnerable applications without modification

• For some of these, results available for commercial tools in the
literature: AppScan,WebInspect, Acunetix

n Experimental environment
– Scanners: skipfish 1.9.6b; Wapiti 2.2.1, W3af 1.1
– Gnu/Linux (2.6 kernel) host running several virtual machines
– Apache Web server (1.3.37/ 2.2.8/4.0.0/5.0.0)
– MySQL database server 5

Modified applications
Vulnerable applications

Legend

Injection point not tested by the
scanner

Tested & detected vulnerability
Tested & not detected vulnerability

v4

v7v11v12

- v2 functionally similar to v1
- v8 functionally similar to v4
- v9 functionally similar to v3

Non modified vulnerable applications

Cyphor
Ftss

PliggRiotpix

Conclusion and future work

n Contributions
– Novel approach for web vulnerability detection

• Automatic identification of successful attacks
• SQL injections, XPATH, OS Commanding, File Include

– Promising results that need to be confirmed by further
experiments

– Suitable for vulnerabilities that modify the response page
returned to the user (not for XSS)

n Current and Future work
– More extensive validation experiments
– Generate attacks scenarios taking into account

dependencies between vulnerabilities
– Evaluation of web applications IDS (Dali project)

DALI project

Application level
intrusion detection

techniques

Assessment
methodology

and tools

Specification
based Contracts

Invariants extraction
from execution learning

Prototype

Experiments
- IDS efficiency
- Comparative analysis

Results
- normal traffic
- attacks

