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Context

® Web vulnerabilities have become a major threat to
information systems security

— SQL Injections, XPATH, OS commanding, XSS,...
— Lack of sanitization of URL parameters, html form inputs, ...

m Attackers can gain unauthorized access, read/modify
sensitive data, perform DoS attacks, ...
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User side Server side
SQL X <?php include (‘db.php’);
) $r=mysql_query(«select*from USER where»
.. Login [ ||=—pp dlogin = *» .$_GET['login’] «’and » —
|njeCt|0n Pass [ | «login =‘» .$_GET['pass’] «’»);
If (my_sql_fetch_row($r)) include(‘connected.php’);
else include(‘error.php’); 7>
user inputs SQL request Result
(john; 12gh3) Select * from USER where connected
login = ‘john’ and pass ='12gh3’
(me; 1’ or ‘1 ’:1) Select * from USER where connected

login = ‘me’ and pass =1" or “1'="1’




Techniques to cope with vulnerabilities

B |dentification and possible sanitization at runtime of
malicious requests

— Web application Firewalls, IDS
B Static analysis of the source code

® \Web vulnerability scanners
— Black box security testing

— identify injection points and generate specially crafted
iInputs to detect vulnerabilities



Web vulnerability scanners

B Commercial tools
— Weblnspect, AppScan, Acunetix, ...

® Open source and publicly available tools
— Skipfish: http://code.google.com/p/skipfish
— W3akF: http://w3daf.sourceforge.net
— Wapiti: http://wapiti.sourceforge.net ; ...

B Several experimental analyses point out the need to
improve the detection efficiency and the automation
capabilities of existing tools

— [Fonseca et al. 2007; PRDC-2007], [Bau et al. 2010; Symp.
Security & Privacy]; [Doupé et al. 2010, DIMVA], etc.

B Research objectives
— contribute to fulfill this gap



Existing approaches

B General principle

— Submit through injection point a few crafted inputs and conclude
about vulnerability existence based on server reponses analysis

® Error pattern matching: W3aF, Wapiti, Secubat
— Search for some predefined error messages

B Similarity analysis of server reponses: skipfish
— 3 requests for each injection point
I - R2  AUGEEE R3  A\G\C

— a vulnerability exists if the responses associated to R, and R,
are different and those associated to R, and R; are different

m General comments
— Only a few requests are generally submitted (two or three)

— None of the investigated tools provides the requests that
successfully exploit the identified vulnerability



Discussion

® Only a few requests are generally submitted
— two or three

B None of the investigated tools provides the requests that
successfully exploit the identified vulnerability

m Contribution: a new vulnerability detection algorithm based
on the similarity analysis approach:

— Generation of a large number of requests that can be tuned by
the user to potentially achieve a higher coverage of the server
responses space

« Grammars specific to vulnerability classes

— Automatic identification of successful injections based on the
hierarchical clustering of similar server response pages



Proposed approach

B Generate requests that would
likely produce failed execution
pages (rejection pages)

_ . ‘http:.-'".-"'addressf"direc'l:n:ary.-"paqe.php? \
|R1 Randomlydgenerated login=ABCDEF &pass=ABCDEF
OgINn-passworads




Proposed approach

B Generate requests that would
likely produce failed execution
pages (rejection pages)

— R1: Randomly generated
login-passwords

— R2: Syntaxically invalid
Injections
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m Generate syntaxically valid
injections : R3
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Proposed approach

B Generate requests that would

likely produce failed execution o O 3;3'“5*“
pages (rejection pages) : o O : QR;
— R1: Randomly generated ° JP OR,

login-passwords

— R2: Syntaxically invalid
Injections

® Generate syntaxically valid
injections : R3

31d Cluster 1st Cluster 4th Cluster
m |dentify successful injections

based on the similarity
analysis of R3 responses Clusters with only syntactically

compared to R1 and R2 valid SQL injections (R3)
identify successfull injections
responses




Algorithm

® Entry point: URL of the web application

Initial
injection point

List of newly
@ «——— accessible
injection points

Yes

List of accessible Mew accessible y Fli:arl ”I:?ﬁiglf
injection points injection point 7 uinerabilities
in the site

For each accessible injection point
For each vulnerability:

List of
vulnerabilities

Use our algorithm

List of accessible
injection points through
vulnerabilities exploitation




Experimental assessment

m WASAPY tool
— Web Application Security Assessment in Python

m Comparative analysis with open source vulnerability
scanners: skipfish, Wapiti, W3af

B Two types of experiments
— Modified applications including specific injected vulnerabilities

— Publicly available vulnerable applications without modification

 For some of these, results available for commercial tools in the
literature: AppScan,Weblnspect, Acunetix

® Experimental environment
— Scanners: skipfish 1.9.6b; Wapiti 2.2.1, W3af 1.1
— Gnu/Linux (2.6 kernel) host running several virtual machines
— Apache Web server (1.3.37/ 2.2.8/4.0.0/5.0.0)
— MySQL database server 5



Modified applications
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Non modified vulnerable applications
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Conclusion and future work

m Contributions

— Novel approach for web vulnerability detection
« Automatic identification of successful attacks
« SQL injections, XPATH, OS Commanding, File Include

— Promising results that need to be confirmed by further
experiments

— Suitable for vulnerabilities that modify the response page
returned to the user (not for XSS)

B Current and Future work
— More extensive validation experiments

— Generate attacks scenarios taking into account
dependencies between vulnerabilities

— Evaluation of web applications IDS (Dali project)
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