A clustering Approach for Web
Vulnerabilities Detection

Mohamed Kaaniche

Rim Akrout, Eric Alata, Yann Bachy,
Anthony Dessiatnikoff, Vincent Nicomette

LAAS-CNRS

[Design and
\W Assessment of application
Level

Intrusion detection systems

IFIP WG 10.4 meeting, Martinique, 26-30 January 2012

Outline

® Context and motivation

® Web vulnerability scanners
B Proposed approach

® Experimental results

B Conclusion

Context

® Web vulnerabilities have become a major threat to
information systems security

— SQL Injections, XPATH, OS commanding, XSS,...
— Lack of sanitization of URL parameters, html form inputs, ...

m Attackers can gain unauthorized access, read/modify
sensitive data, perform DoS attacks, ...

Context

® Web vulnerabilities have become a major threat to

information systems security

— SQL Injections, XPATH, OS commanding, XSS,...
— Lack of sanitization of URL parameters, html form inputs, ...

m Attackers can gain unauthorized access, read/modify

sensitive data, perform DoS attacks, ...

Database

user

login pass

john 12gh3

vincent | uut1p

User side Server side
SQL X <?php include (‘db.php’);
) $r=mysql_query(«select*from USER where»
.. Login [||=—pp dlogin = *» .$_GET['login’] «’and » —
|njeCt|0n Pass [| «login =‘» .$_GET['pass’] «’»);
If (my_sql_fetch_row($r)) include(‘connected.php’);
else include(‘error.php’); 7>
user inputs SQL request Result
(john; 12gh3) Select * from USER where connected
login = ‘john’ and pass ='12gh3’
(me; 1’ or ‘1 ’:1) Select * from USER where connected

login = ‘me’ and pass =1" or “1'="1’

Techniques to cope with vulnerabilities

B |dentification and possible sanitization at runtime of
malicious requests

— Web application Firewalls, IDS
B Static analysis of the source code

® \Web vulnerability scanners
— Black box security testing

— identify injection points and generate specially crafted
iInputs to detect vulnerabilities

Web vulnerability scanners

B Commercial tools
— Weblnspect, AppScan, Acunetix, ...

® Open source and publicly available tools
— Skipfish: http://code.google.com/p/skipfish
— W3akF: http://w3daf.sourceforge.net
— Wapiti: http://wapiti.sourceforge.net ; ...

B Several experimental analyses point out the need to
improve the detection efficiency and the automation
capabilities of existing tools

— [Fonseca et al. 2007; PRDC-2007], [Bau et al. 2010; Symp.
Security & Privacy]; [Doupé et al. 2010, DIMVA], etc.

B Research objectives
— contribute to fulfill this gap

Existing approaches

B General principle

— Submit through injection point a few crafted inputs and conclude
about vulnerability existence based on server reponses analysis

® Error pattern matching: W3aF, Wapiti, Secubat
— Search for some predefined error messages

B Similarity analysis of server reponses: skipfish
— 3 requests for each injection point
I - R2 AUGEEE R3 A\G\C

— a vulnerability exists if the responses associated to R, and R,
are different and those associated to R, and R; are different

m General comments
— Only a few requests are generally submitted (two or three)

— None of the investigated tools provides the requests that
successfully exploit the identified vulnerability

Discussion

® Only a few requests are generally submitted
— two or three

B None of the investigated tools provides the requests that
successfully exploit the identified vulnerability

m Contribution: a new vulnerability detection algorithm based
on the similarity analysis approach:

— Generation of a large number of requests that can be tuned by
the user to potentially achieve a higher coverage of the server
responses space

« Grammars specific to vulnerability classes

— Automatic identification of successful injections based on the
hierarchical clustering of similar server response pages

Proposed approach

B Generate requests that would
likely produce failed execution
pages (rejection pages)

_ . ‘http:.-'".-"'addressf"direc'l:n:ary.-"paqe.php? \
|R1 Randomlydgenerated login=ABCDEF &pass=ABCDEF
OgINn-passworads

Proposed approach

B Generate requests that would
likely produce failed execution
pages (rejection pages)

— R1: Randomly generated
login-passwords

— R2: Syntaxically invalid
Injections

Proposed approach

B Generate requests that would
likely produce failed execution
pages (rejection pages)

— R1: Randomly generated
login-passwords

— R2: Syntaxically invalid
Injections

m Generate syntaxically valid
injections : R3

INJECTION
POR

TAU

WORD

WORD " POR TAU [POR TAU
WORD " POR TAU [" POR TAU
‘or

Y POR(

Hex(‘A)="41

=1

‘[-m] between ‘[a-e] and ‘[n-z]
[0-9a-zA-Z]"

Proposed approach

B Generate requests that would

likely produce failed execution o O 3;3'“5*“
pages (rejection pages) : o O : QR;
— R1: Randomly generated ° JP OR,

login-passwords

— R2: Syntaxically invalid
Injections

® Generate syntaxically valid
injections : R3

31d Cluster 1st Cluster 4th Cluster
m |dentify successful injections

based on the similarity
analysis of R3 responses Clusters with only syntactically

compared to R1 and R2 valid SQL injections (R3)
identify successfull injections
responses

Algorithm

® Entry point: URL of the web application

Initial
injection point

List of newly
@ «——— accessible
injection points

Yes

List of accessible Mew accessible y Fli:arl ”I:?ﬁiglf
injection points injection point 7 uinerabilities
in the site

For each accessible injection point
For each vulnerability:

List of
vulnerabilities

Use our algorithm

List of accessible
injection points through
vulnerabilities exploitation

Experimental assessment

m WASAPY tool
— Web Application Security Assessment in Python

m Comparative analysis with open source vulnerability
scanners: skipfish, Wapiti, W3af

B Two types of experiments
— Modified applications including specific injected vulnerabilities

— Publicly available vulnerable applications without modification

 For some of these, results available for commercial tools in the
literature: AppScan,Weblnspect, Acunetix

® Experimental environment
— Scanners: skipfish 1.9.6b; Wapiti 2.2.1, W3af 1.1
— Gnu/Linux (2.6 kernel) host running several virtual machines
— Apache Web server (1.3.37/ 2.2.8/4.0.0/5.0.0)
— MySQL database server 5

Modified applications

T «=| 2| &

: AEIRAR

e Vilnerabilities 1232|383

= SecurePages (PHP/MySQL) Type Application 1220 I

phpEE3 vl X X v |

= HardwareStore (PHP/MySQL) BacurePages v T X T ¥ 717

: 3 |7 [7| 7| 7

= Insecure (Ruby On Rails) | :4 S % 7

= Damn Vulnerable Web Application SQL/ | HardwareStore | v5 | « | X | X | /

(PHP/MySQL) e —

vT v

Insecure vB v | v | X v

Legend DVWA el s | | |

/ Tested & detected vulnerability IR0 | X | X X/

X Tested & not detected vulnerability i o

— Injection point not tested by the i |V 4
scanner | Nombre de détection [5] 4] 3] 12]

- v2 functionally similar to v1 @

- v8 functionally similar to v4

- v9 functionally similar to v3 @ @ @

Non modified vulnerable applications

2| lw|2| B 5
(2’ o -
Vulnerability gz |22 Zls|l2|B8| 3|8 %
T CVE Location ’ Sl2 | & E|R| 2|5
ype . S |lzlz |2 | B|ZS)| 8
NR searcchphp [|V | ¥ | ¥ Vulnerability w z | = 2| <
SQLi [2005-3236 | lostpwdphp § # | ¥ | ¥ | 7 Type | CVE | Location
20035-3236 | newmsg.php raEaSEaxa 0sC NR index.php J X X | L XXX
2005-3575 | showphp Q< |/ |/ | ¥ | False positive JO O[O JOTOT0 0]
False positive 1 [0]0 |0 |
! Ftss
Cyphor
= =| 7| ® -8
EEEEEE
Vulnerability 2 Z| 2| 2| B § 2
Type CVE Location
5| o =| = 8| 8 = 20087091 login.php X X[X[7] X[7| X
€| & & 5 2| z| B 2008-7091 story.php X[L[| V]| ¥
_ 2|z = i‘ = =1 NE userrss.php X x| x| X[/] /| ¥
Vulnerability @ <| 2| < 2008-709] out.php X X[X| X[7| X[7
Type | CVE Location 2005-7097 | trackback.php | X| X| X | X| X| X| X
NR edit_post.php K| X| X| /] X[X[X SQLi | 20087097 cloud.php X[X[X| X[X| X| X
NR | edit_post scriptphp § X | X| X| X| X| X| X 2008-7091 cvote.php X[X| X| X[X| X| X
SQLi | NR index.php X| X| X| X| X| X| X 2008-7091 | recommend.php [X| X| X | X| X[X| X
NE message.php X x| x| /| X[X| X Z008-7091 submit.php X[X X[X[X[X| X
NR reader.php VIS XS XXX 2008-7091 vote php X| X| X| X| X| X]| X
| False positive fojojoj2]1[1] 0]
Riotpix Pligg

Conclusion and future work

m Contributions

— Novel approach for web vulnerability detection
« Automatic identification of successful attacks
« SQL injections, XPATH, OS Commanding, File Include

— Promising results that need to be confirmed by further
experiments

— Suitable for vulnerabilities that modify the response page
returned to the user (not for XSS)

B Current and Future work
— More extensive validation experiments

— Generate attacks scenarios taking into account
dependencies between vulnerabilities

— Evaluation of web applications IDS (Dali project)

DALI project

. . :EEEC&& :'::N:h" Kereval Web Services — 1
/ Application level =

intrusion detection e
Specification

techniques
: based Contracts

KEIQEQ/E\

Py

Invariants extraction
from execution learning

Assessment Experiments \
methodology
and tools

Results

- normal traffic - IDS efficiency
- attacks - Comparative analysis

