Assured Cloud Computing

Roy Campbell
University of Illinois at Urbana-Champaign

= Umverszty Center of Excellence R
\ }f . o
Sponsored By: AFRL/AFOSR

Information Trust Assured Cloud Computmg

Motivation

- o Assigned Tasks in Accordance with an Intended Purpose
Missions to Accomplish an Assured Mission.

Critical Hybrld (public, private, heterogeneous) clouds that
Clouds require the realization of “end-to-end” and “cross-

layered” security, dependability, and timeliness.

Middleware e Control, monitoring, assessment of policies,
and response

e Configuration and management of dynamic
systems of systems with both trusted and
partially trusted resources

« Services sourced from multiple organizations
tenanc

NIST Definition

July 5, 2011:

The NIST Definition of Cloud Computing identified
cloud computing as:

» [...] a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of
configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal
management effort or service provider interaction. *

Mission: Dependability

Missions are tasks mapped to

— dynamic resources made
[Mission } available by cloud providers

[Mission } [Mission }

. — Dependability: we need to
[Mission } [Mission } ensure that the mission

requirements will be met
@ @ even when resources are
— :

shared

Mission requirements

Continuous Monitoring)ensures
apped into resources

requirements are me

Middleware Layer aware of
the security and of the
performance of the
underlying resources

\

Mission Requirements

gneliness of computation\ @urity of computation \

e Systems performing computation
respect security policies
- “computation can be performed
only on DoD hosts”
“hosts running the computation

cannot run other clients’
computation at the same time”

- “host providing authentication
should not be accessible from
outside the network”

\ / Monitoring for Policy Compliance /

« Fast, parallel, and
guaranteed to finish before

deadlines
- “analysis of the map needs
to finish within 2 minutes” _

Outline

e Introduction to Assured Cloud Computing
e Monitoring for Security Policy Compliance
- Local Processing of Policies
- Distributed Event Processing
- Security of the Monitoring System

e Experimental evaluation

e Conclusions

Security Policy Compliance

 Security is at the base of “Assured Cloud Computing”

e Security requirements expressed through “policies” that
indicate minimal security requirements

- Approach used in the US by FISMA, PCI-DSS, NERC CIP

Examples:

« A critical device should be placed within a security perimeter
» Unprotected devices should not communicate with machines
running critical services

« Computation on confidential data must performed on hosts under
the control of DoD

Related Work

Policy-driven approaches to security

- FISMA, NERC, PCI-DSS all provide documents specifying security
requirements on the infrastructure

- Compliance measured through periodic assessments

Cloud monitoring

- Monitoring of continuous variables
» [Meng et al. - K&DE 2011], [Laguna et al. - Middleware 2009] and others

- Open-source architecture for monitoring [Chaves et al. - IEEECOMM 2011]

- We look at discrete events and we show how knowledge of policies can
optimize the process

Access control policy compliance monitoring

- Focus on complex policies and small number of event generator
e e.g, [Garg et al. - CCS 2011], [Lam el al. - TRUSTBUS 2009]

Discrete Event Systems [PADRES, AMIT]

- We focus on system monitoring and we exploit the fact that events
describe resources for optimizing processing

Events as Monitoring Data

e Monitoring compliance requires information about the state of
the system - Discrete Event Processing

Policy Policy
Policy

N\ /

Policy Compliance
Monitoring System

ﬁﬁﬁ

SNMP Syslog Applications

300

Policy violation
(Complex Events)

Event Correlation Engine

Event Generation

Cloud Computing
Infrastructure

Discrete Event Processing for Policy Monitoring IM

 Distribution of processing enables scalability and security
* Policies define how events are processed across hosts

I/ | l | l l Integrity
- - - Policies expressed in Datalog / RDF

T T » RDF statement: subject, yredicaw, object

\ v \ L Violation € Event Correlation
APOHCV /"\‘ APOHCV / . B reachService S,
e e
s - B controlledBy U,

S T S W hasVulnerability 'V,

A A / S usesSoftware W,
A provideService S,
44 e M A connectedTo ‘N,

U U Local Event Processing

Policy Analysis

Analyze policies to distribute the event correlation process
RDF Policies represented as graphs
« Variables are nodes, edges are predicates

Violation € B reachService S, ‘B connectedTo ‘N, B controlledBy U,
W hasVulnerability V, S usesSoftware W,
A provideService S, A connectedTo N

Graph-based analyses enable:

1. Local Event Processing

2. Distributed event correlation
3. Redundancy

4. Host failure detection

connectedTo R, iprovidéService
_/

“usesSoftware @ hasVuln @

1) Local Event Middleware

Partial processing of policies is delegated to local nodes
to reduce the overall event exchange

Policies are distributed to a
monitoring middleware present

on local hosts _ Local Agent /&7 .

4 Y
Communication
> 42
Local event processing detects — 2
: L nrerence 7 —_—
violations based on complex [Engine } 2|
events generated locally [i
Local Event Handler
N AN/
- J

VM
i i 1 1 Intr ion - SNMP
Distributed reasoning is used for ospectio
correlating events across

multiple hosts

Montanari M., Chan E., Larson K., Yoo W., Campbell R.H. , "Distributed Security Policy Conformance," IFIP SEC 2011 12

1) Local Policy Identification

« Definition of Local Portion of the policy
« Exploits knowledge about what is being monitored
* Only events satisfying all local conditions are forwarded outside

Monitoring system meta-

info used for 1dent1fymg @ connectedTo D\ jprovidéService)@fusesSoﬁ"ch’e
local “complete” events ~

. : hasVulr
If we are monitoring an host A, we know all its “I

services, its connections and the software its
services are using

connectedTo B\ 79r0vicfe$erv1’ce
_/

fusesSoﬁ'ware @ hasVuln @

1) Local Policy Equivalent Rewrite

« Local portion of the policy is processed in the inference engine

local(N, B, 5) & o N1

A connectedTo N : —
A yrwidéSewice S > Communication Is
S useSoftware W \ g
W ﬁ V [V T Inference = b
asvumn Engine é_’
Violation < g iz
&)CCL((N ﬂ S) Local Event Handler L
))) \ L))
R connectedTo ‘N, —
é COﬂﬂ’Oﬂé(f ‘U Introspection - SNMP

connectedTo B\ 79r0vicfe$erv1’ce
_/

fusesSoﬁ'ware @ hasVuln @

Server

2) Distributed Correlation - Basic Architecture
Monitoring

A client with “critical” security
requirements should not use a
service on a vulnerable machine =
clientA ,"' \ serviceC
Violation € C requirements critical, Tequirements /| . hasVuln
cl p critical .~ /
C useService S, ’, N uli
S hasVuln vV clientA :' ‘
“useService ,
serviceB ./ ;o serviceB
i hasVuln
4 ! Vul1

Service C

hasVuln @

useService

rrequiremen’rs

Service B

Client A

Intuition: two events
connected in the graph
share the value for one

of the variables
Montanari M., Campbell R., Attack-resilient Compliance Monitoring for Large Distributed Infrastructure Systems. IEEE NSS 2011

15

Server

2) Distributed Correlation - Basic Architecture Ml
Monitoring

A client with “critical” security
requirements should not use a
service on a vulnerable machine -
clientA f serviceC
Violation € C requirements critical, requirements /| ot
1 tical ; .. hasVuln
C useService S, crificat < Nl
S hasVuln vV client? / "
“useService ’
serviceB ./ | serviceB
i hasVuln
4 ! Vul1

Service C

hasVuln @

useService

frequirements

Intuition: two events :
: Service B
connected in the graph Client A
share the value for one
16

of the variables
Montanari M., Campbell R., Attack-resilient Compliance Monitoring for Large Distributed Infrastructure Systems. IEEE NSS 2011

2) Distributed Correlation

We use the policy to define Aggregation
Policy Trees that correlate subsets of the
policy at each level

|j dist(C) <
C useService S,

) S hasvul v

serviceB

* serviceB
L hasVuln
ClientA vl
"~useService N
= serviceB -iﬁ

-

“useService

is

Different portions of the
policy are matched at
different nodes, and the
result is forwarded so that
validation can continue

17

2) Distributed Correlation

We use the policy to define Aggregation
Policy Trees that correlate subsets of the
policy at each level

’requirements

Violation & dist(C), .
C requirements critical Aggregation--.
R Poligy Tree

A ""‘Aggregation i
frents POl]C Tree .)
C M ' -| i ‘ | Different portions of the

x dist(C) € | ~ policy are matched at
; :C useService S, . different nodes, and the
o S hasVulV o - result is forwarded so that
 service ServiceC - validation can continue
e serviceB M serviceC
clientA | . hasVuln !Sias\/u(n
Tequirements, ClientA ™ \uli 'I Vul1
critical | . useService .
"B serviceB -‘ :
-

18

2) Distributed Online Rule Analysis

Intuition formalized in an algorithms with two steps

Compilation: Creates a set of rule elements and state triggers

aggregation tree
ggreg State triggers: define

Violation € which messages to send and
C requirements critical, |:> j;j :> their destination
C useService S,
S ﬁas’\/ufnemﬁifity Y, Rule elements: partial

validation of the policy

Execution: Messages are exchanged across hosts

State triggers

’ | Rule elements
1 / ~ 1 State triggers
e

Rule elements

State triggers

Rule elements
19

3) Protecting against server integrity compromisesm

Each level of the policy aggregation tree Violation €

can be made redundant C requirements critical,
C useService S,

S hasVuln vV
' | | | clientA
o e =
clientA e ___—,'::::::’_;1‘:‘5‘:‘*_-;'_1 ''''' = ': s i
Tequirements S Py L P J
critical ' | | | I | .
service
€ T
S Limited load on each
C[’Semﬂ %e’""\lfe? server permits to do
ruseservice as vuin redundant work without
service'B Yul

affecting performance

The compromise of one server does not affect integrity

The compromise of the majority of servers at the same level only

affects one aggregation tree, not the entire policy validation 20

4) Detection of host failures

Scalable communication and detection of failures obtained by
building the system on top of a DHT

Correlation servers are
connected using a DHT

C[ient?l
’j
IF\\\ serviceC
“~._ ServiceB A
| A
clientA | ’ ' -
Tequirements = ®
critical | A % serviceB serviceC
! /' [-, ‘\\ ﬁas\/ufn \\\ ﬁag’\/uﬁq
< clientA " [, N
o / joR N ,\/u 1 N ’\/uﬁ
“useService

"B serviceB
-

21

4) Detection of Failures

Scalable communication and detection of failures obtained by
building the system on top of a DHT

Correlation servers are
connected using a DHT

H(clientA)

g Name of resources is used for
selecting the correlation node
to use

/iw\\\ H(serviceC)
“~~._ H(serviceB) y. . .)
| Automatic reconfiguration
clientd | _ after server failures
Tequirements: »
critical | AV serviceB serviceC
| hasVuln
o clientA hasVuln
) . uli v yul
“useService

"B serviceB -
- £

22

4) Detection of failures

Scalable communication and detection of failures obtained by
building the system on top of a DHT

Correlation servers are
connected using a DHT

H(clientA)
g Name of resources is used for
selecting the correlation node
< H(serviceB) to use
\‘\\\\ H(serviceC)
i Automatic reconfiguration
Clientd | Clienta T e after server failures
Tequirements: “useService .
critical i Se‘r'\f!'Geﬂi”/ serviceC
| - ServiceB ﬁas\/;x[n
hasVuln Vuli

’

— Yl

1 _--"
1 .-
1 -7
1 -

-

-
Lo ,

3
i :
—

Y
N
—
r—

23

Experimental Results

e Odessa implemented in Java and C
- Communication built on top of Freepastry

- To increase the trustworthiness of agents, we run them in Dom0O
when possible.

Mechanism Configuration obtained
DomQ0 (XenAccess, file system) Running processes, network
connections, configuration files
Host VM (Linux kernel module) Fast detection of new network

communications

e Using such information, we implemented policies for validating:
- Presence of specific programs
- NFS authorizations across networks
- Attack graph generation

24

Delegation Experiments: Reduced Load

G_) 300 T T T T T T va,n] 14000 T T T T T T
0 ' ' T de==] 3 Goras forad
? =] t;% [2 os0l go_ra-g e E | 12000 dora-5 ------ *]
£ " 1 8 e oo | ey % e
S o 200 | 1o o
& 60 N - 1 = P > 8000 - o -
p , S 150 o 12
n 3 E 6000 :
S 40 o B 18 ol I*
c ol Wl g e 4000
2 <Xtk B 5 L
o ERRs e 1 © T 1 200§
N :.4 ﬂ ‘ >‘ ’ S o= X - X X >3 X X ,
° g ﬂ ﬂ :‘ ﬂ ™ © 0 L i ! + }) 0w i [[- [R [- [
° B > - 4 . 6 - 8 - 0 40 60 80 100 120 140 160 180 200 40 60 80 100 120 140 160 180 200
Rule size # hosts # hosts
Local processing reduces Correlation servers need to store a limited number
the amount of events of events and send a limited number of messages
delivered (rule size: local
portion of the rule)
o0 — —r—————————— & Delay in detection 10
Pl e xe e e violations remains limited B of
é 500 [; L *.///;f‘w.'\’\:gf;/’z -S, 6
g Cfo- T 1 Replication provides > = °|
300 §--- y . S ol dora-1 —+— |
200 [y graceful C{egr adation of = Cem;ﬁ;&g S
ool e L L integrity in case of L S S T PR
40 60 80 100 120 140 160 180 200 . # compromised hosts
hosts compromises

25

Future Work

e Synthesize global properties from placement

Confidentiality of monitoring data

- Protecting confidentiality of event data both within a cloud and in
between cloud providers

Integrity of event sources
- What if data are corrupted at the source?

Explore automatic reconfigurations in assured cloud computing
- Policy violation data can be used for reacting to problems

Availability

26

Conclusions

Assured Cloud Computing requires technologies that permit predictability
in performance and in security.

Monitoring is required for maintaining dependability, security, and
performance in a dynamic cloud environment

We focus on policy compliance to monitor security requirements

Our approach formalizes analyses of policy languages to identify
appropriate distributed placements for security policy compliance
evaluation

- We use information about the distributed system and the policies to
generate a set of equivalent rules to enable a scalable and secure
detection of complex events

Our approach outperforms centralized approaches and protects the system
against integrity compromises

27

Bibliography

[Meng et al. - K&DE 2011] Meng, S., & Liu, L. (2011). State Monitoring in Cloud Datacenters. Knowledge and
Data Engineering, IEEE Transactions on, 23(9), 1328-1344.

[Chaves et al. - IEEECOMM 2011] Chaves, S. A. D., Uriarte, R. B., & Westphall, C. B. (2011). Toward an
Architecture for Monitoring Private Clouds. IEEE Communications Magazine,

(December), 130-137.

[Garg et al. - CCS 2011] Deepak Garg, Limin Jia and Anupam Datta. Policy Auditing over Incomplete Logs:
Theory, Implementation and Applications. ACM CCS 2011

[Lam el al. - TRUSTBUS 2009] Peifung E. Lam, John C. Mitchell and Sharada Sundaram. A Formalization of
HIPAA for a Medical Messaging System. Lecture Notes in Computer Science, 2009, Volume 5695/2009, 73-85.

[Laguna et al. - Middleware 2009] Ighacio Laguna, Fahad A. Arshad, David M. Grothe and Saurabh Bagchi. How
to Keep Your Head above Water While Detecting Errors. IFIP/ACM/IEEE Middleware 2009

[PADRES] Fidler, E., Jacobsen, H., & Li, G. (2005). The PADRES distributed publish/subscribe system. Feature
Interactions in Telecommunications and Software Systems.

[AMIT] Adi, A., & Etzion, O. (2004). Amit-the situation manager. The VLDB Journal &~ The International Journal
on Very Large Data Bases, 13(2)

28

