FAILURE DIAGNOSIS & VISUALIZATION FOR CLOUD COMPUTING

Jiaqi Tan, Soila Kavulya, Mike Kasick, Elmer Garduno, Xinghao Pan, Nathan Mickulicz, Rajeev Gandhi

Priya Narasimhan

Carnegie Mellon University

Automated Failure-Diagnosis

- Diagnosing the root-cause of failures
 - Creates major headaches for administrators
 - Worsens as scale and system complexity grows
- Goal: automate it and get proactive
 - Fault detection
 - Fault localization ("automated fingerpointing")
 - Problem visualization
- How: Instrumentation plus statistical analysis

Exploration of Fingerpointing

- Current target systems
 - MapReduce / Hadoop
 - [HotCloud 09, HotMetrics 09, WASL 08, SysML 08, NOMS 10, ISSRE 09, CCGrid 10, ICDCS 10, ACM CHIMIT 11]
 - PVFS, Lustre, GPFS
 - High-performance parallel file/storage system [HotDep 09, USENIX FAST 10, HotDep 10]
 - Real-world production clusters: Intrepid, Argonne National Labs
 - VolP Systems
 - Real-world telecom system [SLAML 11, ACM OSR 11]

Studied

- Various types of problems
- Various kinds of instrumentation
- Various kinds of data-analysis techniques

Goals & Non-Goals

- Diagnose faulty node to user or system administrator
- Target production environments
 - Use Hadoop logs as-is (white-box strategy)
 - Use OS-level metrics (black-box strategy)
- Work for various workloads and under workload changes
- Support online and offline diagnosis
- Enable visualization of job progress for root-cause analysis
- Non-goals (for now)
 - Tracing problem down to the offending line of code

Target Hadoop Clusters

- 4000-processor Yahoo!'s M45 cluster
 - Production environment (managed by Yahoo!)
 - Offered to CMU as free cloud-computing resource
 - Diverse kinds of real workloads, problems in the wild
 - Massive machine-learning, language/machine-translation
 - Have harvested all logs and OS data each week for 2 years
- 100-node Amazon's EC2 cluster
 - Production environment (managed by Amazon)
 - Commercial, pay-as-you-use cloud-computing resource
 - Workloads under our control, problems injected by us
 - gridmix, nutch, pig, sort, randwriter
 - Can harvest logs and OS data of only our workloads

M45 Dataset Summary

Job Characteristics		
Log Period	April 2008 – April 2009	
Number of jobs	Successful: 165948 (97%)	
	Failed: 4100 (2.4%)	
	Canceled: 1031 (0.6%)	
Average job duration	20 minutes (max: 6.8 days)	
Average nodes per job	27 (max: 299)	
Dominant job patterns	Map-only jobs: 77%	
	Map-mostly jobs: 14%	

Job-Failure Statistics

- Failures due to bad config detected quickly
 - But, 30% of failed jobs run for >1hr before aborting
- 5131 (3%) jobs failed or were canceled by user
 - Over 70% of these failures during the Map phase
 - 5% of these failures due to configuration problems, such as missing files, during job initialization
- Performance problems harder to identify
 - Lack of ground truth data
 - Identifying slow jobs through performance prediction [CCGrid 10]

Faults Studied

	Fault	Description
Resource contention	CPU hog	External process uses 70% of CPU
	Packet-loss	5% or 50% of incoming packets dropped
	Disk hog	20GB file repeatedly written to
	Disk full	Disk full
Application bugs	HADOOP-1036	Maps hang due to unhandled exception
	HADOOP-1152	Reduces fail while copying map output
Source: Hadoop JIRA	HADOOP-2080	Reduces fail due to incorrect checksum
	HADOOP-2051	Jobs hang due to unhandled exception
	HADOOP-1255	Infinite loop at Nameode

Studied Hadoop Issue Tracker (JIRA) from Jan-Dec 2007

Hadoop: Instrumentation

How About Those Metrics?

- White-box metrics (from Hadoop logs)
 - Event-driven (based on Hadoop's activities)
 - Durations
 - Map-task durations, Reduce-task durations, ReduceCopy-durations, etc.
 - System-wide dependencies between tasks and data blocks
 - Heartbeat information: Heartbeat rates, Heartbeattimestamp skew between the Master and Slave nodes
- Black-box metrics (from OS /proc & Ganglia)
 - 64 different time-driven metrics (sampled every second)
 - Memory used, context-switch rate, User-CPU usage,
 System-CPU usage, I/O wait time, run-queue size, number of bytes transmitted, number of bytes received, pages in, pages out, page faults

Intuition for Diagnosis

- Peer-comparison algorithm (others underway)
 - Slave nodes are "peers," doing approximately similar things for a given job
 - Compare the behavior of peers across the system
- Gather metrics of peers and extract statistics
 - For both black-box and white-box data
- Peer-compare histograms, means, etc., to determine the "odd-man out"
- Extended to cover heterogeneity within a job and its tasks

Log-Analysis Approach

- SALSA: Analyzing Logs as StAte
 Machines [USENIX WASL 2008]
- Extract state-machine views of execution from Hadoop logs
 - Distributed control-flow view of logs
 - Distributed data-flow view of logs
- Diagnose failures based on statistics of these extracted views
 - Control-flow based diagnosis
 - Control-flow + data-flow based diagnosis
- Perform analysis incrementally so that we can support it online

Applying SALSA to Hadoop Logs

Distributed Control+Data Flow

- Distributed control-flow
 - Causal flow of task execution across cluster nodes, i.e.,
 Reduces waiting on Maps via Shuffles
- Distributed data-flow
 - Data paths of Map outputs shuffled to Reduces
 - HDFS data blocks read into and written out of jobs
- Job-centric causal flow: Fused control+data flows
 - Correlate paths of data and execution
 - Create conjoined causal paths from data source before, to data destination after, processing

On the Black-Box Data Side...

- Analyze black-box data with similar intuition
 - Example method: Derive PDFs, use clustering
 - Distinct behavior profiles of metric correlations
 - Compare distance between histograms across nodes
 - Technique called Ganesha [HotMetrics 2009]
- Analyze heartbeat traffic
 - Compare heartbeat durations across nodes
 - Compare heartbeat-timestamp skews across nodes

Different metrics, different viewpoints, different algorithms

Piecing the Elephant Together

Visualization Tools

- To reveal system execution and trends of metrics for system administrators
 - Allows them to identify faulty nodes visually
- To reveal program/task execution and resource usage to developers
 - Allows them to spot issues that might assist them in restructuring their code/algorithms
- Developed visualization tools for HICC (Hadoop Infrastructure Care Center)
 - Available for public use via collaboration with Yahoo!

Sample Visualization (heat-maps)

CPU hog on node 1 visible due to markedly (and increasingly) different Map-task duration

Sample Visualization (swim-lanes)

Long-tailed Map task delaying the overall job-completion time

Ongoing Work

- Understanding the limits of black-box fingerpointing
 - What failures are outside the reach of a black-box approach?
 - What are the limits of "peer" comparison?
 - What other kinds of black-box instrumentation exist?
- Online diagnosis
 - Latency and scale in running these algorithms online
- Visualization
 - Helping system administrators visualize problem diagnosis
- Trade-offs
 - More instrumentation and more frequent data can improve accuracy of diagnosis, but at what performance cost?
- Virtualized environments
 - Do these environments help/hurt problem diagnosis?

DETOUR

Parallel File/Storage Systems

(DIFFERENT TARGET SYSTEM)

- Parallel file system ideally exhibits balanced load
 - Components should exhibit similar performance
 - Performance imbalance indicates underlying problem
- Intrepid: Located at Argonne National Laboratory
 - 128 GPFS NSD servers, 1152 LUNs across 16 controllers (4.5 PB)
 - Operators need tools to localize the problem
- Performed black-box analysis over three months
 - OS-level metric data
 - Diagnosed 8 independent disk failures (5 controller-failed, 3 operator-failed), 3 lost attachments between controller and server
- More details [HotDep 2009, HotDep 2010, USENIX FAST 2010]

DETOUR

Large-Scale Mobile Video

(DIFFERENT TARGET SYSTEM)

- Mobile streaming video in high-density environment
 - Tens of thousands of sports fans watching a replay overt Wi-Fi on their smartphones in a stadium
 - Smartphone clients, Wi-Fi network, back-end video servers + cloud
- YinzCam: Deployments in 10 NFL/NHL sports venues
 - Ranging from 20,000--80,000 fans inside each venue
 - Typical usage in a venue: 55% of the venue audience
 - Users face video latency, video quality issues, errors in overload
- Performed black-box and log analysis over 2 years
 - Platform-agnostic data, user analytics (across iOS, Android and RIM)
 - Diagnosed network-configuration issues, wireless-router issues, cloud resource-allocation problems

Summary

- Automated failure diagnosis
- Target systems: Hadoop, PVFS, Lustre, GPFS, VoIP
 - Real-world problems in the wild
 - Focus on production environments: M45, Intrepid, VoIP, YinzCam

Additional details

- USENIX WASL 2008 (white-box log analysis)
- USENIX HotCloud 2009, ACM CHIMIT 2011, ICDCS 2010 (visualization)
- HotMetrics 2009 & ISSRE 2009 (black-box metric analysis)
- NOMS 2010 (black-box vs. white-box analyses)
- CCGrid 2010 (M45 data analysis for performance prediction)
- HotDep 2009 (system-call analysis for PVFS)
- USENIX FAST 2010 (black-box analysis for PVFS & Lustre)
- HotDep 2010 (behavior-based analysis for PVFS)
- SLAML 2011 & ACM OSR 2011 (black-box analysis for VoIP)

Research Collaborators

- AT&T Labs
 - Matti Hiltunen, Kaustubh Joshi, Scott Daniels
- University of Lisboa
 - Antonio Casimiro, Diego Kreutz, Carlos Silva (Portugal Telecom)
- Argonne National Labs
 - Rob Ross, Sam Lang
- Intel Labs
 - Jason Campbell

FOR MORE INFORMATION:

HTTP://WWW.ECE.CMU.EDU/~FINGERPOINTING PRIYA@CS.CMU.EDU

