ALARP - A railway automatic track warning system based on distributed personal mobile terminals

Andrea Bondavalli

Resilient Computing Lab
Dipartimento di Sistemi e Informatica
Università degli Studi di Firenze

61° IFIP WG 10.4 Meeting
Martinique France, January 26-30, 2012
• ALARP project motivations, facts and objectives
• The ALARP system
 • The MT (design and ongoing prototyping)
 • The TPAD (design and ongoing prototyping)
• The communication solution
• Validation of the ALARP solution
• Conclusions
Safety of workers in the railway scenario is a serious concern

- trackside workers are exposed to injuries and fatalities since vehicles are constrained to tracks and drivers have little margins to react
- For example: in U.S. railways during 1993-2002 there were 460 fatal railroad-related work injuries within railroading workers and 761 fatal railroad-related work injuries involving workers not from the railroad field

Current solutions for track warning

Autoprowa

Traditional Lookout
The ALARP project

A railway automatic track warning system based on distributed personal mobile terminals

[Link: http://www.alarp.eu/]

RTD project funded within the EU FP7 Transport programme

- call FP7-SST-2008-RTD-1
- EU Grant no. 234088
- EU contribution of € 2,626,610

Started on January 1st 2010 and now entered its final year

7 partners: 2 SMEs, 2 large companies, 3 research partners

Italy
UK
Austria
Germany
Israel
Recall the attention of a workgroup operating on a railway worksite about the presence of a train approaching

- design, develop and validate an innovative **Automatic Track Warning System (ATWS)** to improve the safety of railway trackside workers.

The ALARP ATWS aims to:

- Inform the trackside workers about **approaching trains**, **emergencies on tracks and tunnels** nearby the workers (e.g. fires, toxic smoke), **escape routes**,

- Keep track of the **status and localisation** of the workers and of the operating conditions of devices
ALARP worksite is structured in two different zones:

- **Red (Risk) zone** is an area not protected from rolling stock movements (working limit of a red zone are defined according to the different national regulations).
- **Green (Safe) zone** is the safe area outside of the limits of the Red Zone.

ALARP is meant to be a SIL 2 \(10^{-7} \leq \text{THR} \leq 10^{-6}\) system designed to protect working gangs providing:

- **ALERT** when workers are at risk (e.g., train approaching and worker in red zone), allowing them to reach a safe position (with notice time according to the different national regulations).
- Also used when workers are not responding (injuries or health problems).
- **WARNING** signals are sent only to raise their attention.
Key components:

- one or more **track-side Train Presence Alert Devices (TPADs)**, able to sense an approaching train on the interested track without interfering with the signaling system. Distance from working side depending on expected max speed (could be up to 5 Km.)
- a set of distributed, **Mobile Terminals (MTs)** (low-cost, wearable, context-aware, trustable and highly reliable, wireless, COTS) to inform the workers about approaching trains and/or other events that could harm their safety
- network infrastructure for real-time communication of TPAD-MT and MT-MT
Based on the hybrid distributed system model, the MT is organized in two subsystems with different sets of requirements in terms of security and timeliness.

- The first (wormhole) contains simple but critical middleware services; it executes on a very basic hardware, that ease monitoring and assessing its behaviour.
 - Contains time-related services (resilient clock, synchronization protocols), ciphering and authentication services
- The second (payload) executes on a different hardware than the first; it requires localization, networking and I/O devices to interact with the workers, the TPADs and the MTs
A prototype construction is underway

First prototype with MT composed of two small pcs for (WH and PL) linked together, basic localization and no special devices

Final prototype (one year from now) using virtual machines on Asymmetric Multiprocessing and an OTS multicore processor, more sophisticated localization and ergonomic devices
Ergonomics - Warning/alerting signals

- 6 blinking LEDs (3 red; 3 yellow)
- LED Position on the upper and lower end of the visual range
- Diffuse and adaptive light for glare reduction

- Bone conductor (www.bhm-tech.at)
- Electrical signals are transformed into mechanical vibrations, which are transmitted by bone conduction to the inner ear
- Communication can be maintained in a very noisy environment while using ear protection

Ringwald et al., 2011
TPAD is composed by the following main blocks:

• **Block I (Low power)** triggers the TPAD from a *ready state to full functionalities*, due to a train detection. The triggering is performed by a sub-block which consists of geophone and an accelerometer sensors.

• **Block II (High power)** consists of additional sensors (both geophone and accelerometer) and cameras. This block is activated by Block I and works in higher power consumption levels.

Block I is "extra sensitive" (using very high gain detectors circuits) enabling a very high probability of detection (POD), but also a high False Alarm Rate (FAR).

Block II has mid to high POD and a low to none FAR.

On the whole, the combination of both blocks shall result in a very high POD and a very low FAR.
TPAD block diagram and prototype

Interface towards TPAD external comm module

Dimension:
330x200x120 mm
Weight: < 5 KG
Real-time wireless communication.

- long range between TPADS and a TPAD HUB located in the worksite
- IEEE 802.11 (MTs and an Access Point) within the worksite
- Both...
Real-time communication in the worksite

The Real-time Group Communication Protocol basis for the worksite communication protocol between MTs and TPAD HUB)

• Relying on IEEE 802.11 PCF “Contention Free Period”, a coordinator (Access Point) polls nodes in a round-based style.
• An omission degree is assumed for consecutive losses (to trigger a transition to safe state)
• A resiliency degree value allows specifying the maximum number of retransmissions of each message, at the price of

Modifications were introduced to fit the ALARP requirements

- no need to guarantee agreement and ordering
- solutions for multicast and unicast are introduced
- Three different resiliency degrees to match three different
The ALARP system installations will need to be certified according to the railway EN50126/IEC 50128/50129 reference standards.

The project has thus considered certifiability as the main assessment objective.

A Verification and Validation Plan (V&V Plan), has been defined for a complete future ALARP product.

In addition the subset of V&V activities doable within the project lifetime have been identified and are being performed.
ALARP V&V activities performed in the research project

- Risk Analysis (RA):
 - Hazard Identification, Hazard Analysis & Identification of necessary countermeasures

- Quantitative modelling of ALARP solutions and components (e.g. communication protocols, architectural choices)
 - In particular with respect to THR objectives for SIL2

- Software Testing, Quality and Rule Check (MISRA C++)

- Requirements Traceability at different levels

- Testing on Prototypes (single components and full prototype)
Conclusions

The ALARP project aims to improve safety of railway trackside worker by devising a SIL 2 real-time ATWS

- Architecture Composed of one or more TPADs, a set of MTs and communication infrastructure to provide TPAD-MT and MT-MT communication
- MT design based on hybrid architecture, localization and ergonomic concerns.
- The project is currently in its last year, finalizing implementation of concept to get to a feasibility prototype and on-field demonstrations.
- Ongoing assessment and validation activities

More at http://www.alarp.eu/

A. Bondavalli

61° IFIP WG 10.4 Meeting- Martinique

January 2012 - 19
THANK YOU for your attention.

Questions?