
Martinique, Jan. 2012

Structured Occurrence Nets:
Failure Analysis of Complex Evolving Systems

Brian Randell
School of Computing Science

Newcastle University, UK

Martinique, Jan. 2012

•  A complex evolving system (CES) is the term I am
using for a system that is composed of a large number
of concurrently-acting systems interacting, in general
asynchronously, with each other and with the system’s
environment, with each system being possibly subject
to modification by other systems. Examples include:

•  a large hardware system which suffers component break-
downs, reconfigurations and replacements

•  a distributed system whose software is continually
updated (or patched)

•  a multi-organisational computer system whose human
operators undergo regular re-training

•  a typical large bureaucracy
•  Such very diverse ‘event-based’ systems all suffer from

a very high complexity of both design and behaviour.

Complex Evolving Systems!

2

Martinique, Jan. 2012

Structure
•  The importance of structure in helping designers to cope with

design complexity is well-accepted, especially in software
engineering (hence procedures, threads, classes, types, etc.) and
VLSI design (higher order logics, graph based models, etc.)

•  The effective use of structuring greatly reduces the cognitive
complexity of designs, and the resources, both storage and
computational, involved in their representation and manipulation.
•  But very few design structuring techniques support system evolution.

•  Notations for recording, and especially structuring, representations
of actual or potential system behaviour are much less developed,
even for non-evolving systems.

•  (This is probably because detailed records of the behaviour of complex
systems are mainly used within tools, e.g. for system verification and
failure analysis, rather than in documents and user interfaces.)

•  In fact I started working on the topic of behaviour structuring when I
revisited our community’s beloved “fault-error-failure” chain concept
a few years ago.

3

Martinique, Jan. 2012

•  The dependability community has been interested for many years in the
dependability of both hardware and software-controlled systems, and more
recently also of complex computer-based systems (e.g., composed of
computers, users, and even attackers).

•  We have long accepted the utility of distinguishing between three different
concepts – fault, error and failure – and that these follow a “fundamental
chain”:

. . . → failure → fault → error → failure → fault →. . .
 i.e.

. . . → event → cause → state → event → cause → . . .
•  A few years ago I found myself trying to gain greater understanding of how

fault-error-failure chains can progress within complex systems, i.e. from a
system to:

•  the system of which it is part,
•  a separate system with which it is interacting, or
•  a system that it creates, sustains and/or modifies.

•  Because of some past familiarity with it I used the (graphical but formally-
based) Occurrence Net notation.

Faults, Errors and Failures!

4

Martinique, Jan. 2012

Occurrence Nets

•  Occurrence Nets (ONs) are a well-established mathematical
formalism (now with extensive software tool support) for
representing causality and concurrency information concerning a
single execution of a system.

•  ONs are directed acyclic graphs that portray the (alleged) past
and present, or the predicted, state of affairs in a system, in terms
of conditions (i.e. states), transitions (i.e. events) and directed arcs
(representing known or alleged causality).

•  They are one early outcome of the work, started in 1962, on the
conceptual foundations of a theory of communication, by the late
Carl Adam Petri – whose Petri Net notation is extensively exploited
for understanding synchronisation, and for designing and
validating asynchronous systems.

•  “Information System Theory Project” by Anatol Holt et al (USAF,
RADC, 1968).

•  “Events, Causality and Symmetry” by Glyn Winskel (BCS Int.
Academic Conf. – Visions of Computer Science, 2008).

5

Martinique, Jan. 2012

Occurrence Nets –
A Deceptively Simple Notation

Extant condition Past condition

Event Condition

An occurrence net

Interaction

Occurrence nets must be
fully-connected and
acyclic – and must start
and end with conditions.

Directed arcs (causal
links) join conditions and
events.

Unlike events, conditions
can only have a single
incoming and outgoing
arc.

6

Martinique, Jan. 2012

An Example ON –
two representations

7

Martinique, Jan. 2012

Using Occurrence Nets

•  Simple examples of occurrence nets can be portrayed and
studied as stylized diagrams, but in practice large ONs, to be
useful, need to be stored (and analyzed) inside a computer.

•  An ON looks like an unfolded (i.e. an asynchronous “trace” of a)
Petri Net, but they have no necessary link to Petri Nets.

•  ONs have in fact been re-invented, and re-named, by many
different research communities (e.g. as “strand spaces” by
security researchers, and as “message sequence charts” by
networking researchers).

•  ONs can be used for recording the actual or planned activities of
any kind of complex system – hardware, software or
organizational.

•  ONs are extensively used in the computer industry, e.g. inside
model-checking tools for validating system designs.

•  With various colleagues, I have over the years employed them in
research on deadlock avoidance, on error recovery in distributed
systems (the “chase protocols”), and on atomicity.

8

Martinique, Jan. 2012

Occurrence Nets at Newcastle

http://workcraft.org/

9

Much of the theoretical
research, and tool
development, over many years
in ASL (Newcastle’s joint EE/
CS Asynchronous Systems
Laboratory), on system design,
system validation and system
synthesis, has made use of
ONs.

ASL’s most recent interactive
tool is WORKCRAFT (an
infrastructure for interpreted
graph models).

WORKCRAFT supports ON-
based verification, synthesis
and visualisation.

Existing plug-ins include BDD
packages and SAT solvers.

Martinique, Jan. 2012

The earlier ON example in Workcraft

10

Martinique, Jan. 2012

States and Systems

•  I started trying to gain greater understanding of fault-error-failure
propagation chains amongst interacting systems, and between
such systems and any other systems that they created or
modified, by drawing lots of ON diagrams.

•  As in my previous work, I found them to be an excellent thinking
aid, even when used very informally.

•  I realised that one ON could be used to show the different
stages of evolution of a system, and be associated with further
ONs showing the activities that each successive version of this
system was involved in.

•  Thus I found myself using the same symbol – a “condition” () –
to represent both systems and their states (in different related
ONs).

•  As a result I belatedly came to view ‘system’ and ‘state’ not as
separate concepts, but just a result of a rather special form of
abstraction that I termed “behavioural abstraction”.

•  Maciej Koutny joined in and clarified, corrected and formalised,
and greatly developed, my initial vague and confused ideas on
what we came to call Structured Occurrence Nets.

11

Martinique, Jan. 2012

Note – Such behavioural abstractions cannot be represented
in ordinary occurrence nets

Examples of
Behavioural Abstraction

12

Offline
Evolution

Online
Evolution

Martinique, Jan. 2012

Abstraction,
and Structured Occurrence Nets

•  Behavioural abstraction is just one of a number of forms of abstraction
that we defined for occurrence nets. Two others are spatial and
temporal abstraction. These provide a means of structuring an ON
analogous to, say, the program structuring techniques listed earlier.

•  What we term a Structured Occurrence Net (SON) is a set of related
Occurrence Nets (using several specific forms of abstraction and other
forms of relation).

•  The various relations we have defined are all such that SON’s, like
ONs, are acyclic – and so respect the causality rules.

•  The significance of SONs is that (i) they provide (through behavioural
abstraction) a direct means of modelling evolving systems, and (ii) their
structuring (using temporal and spatial abstraction) reduces their
cognitive complexity, compared to that of an equivalent ON.

•  These advantages can we believe facilitate such tasks as system
validation (via model-checking), system synthesis, and system failure
analysis. (The first two are major long-term interests of ASL – this
presentation concentrates on system failure analysis, and takes a
rather general view of the concept of a “failure”).

13

Martinique, Jan. 2012

Multiple Systems

•  Basic ONs are appropriate for single (non-evolving, typically
asynchronous) systems.

•  We delineate (using enclosing rectangular dashed boxes)
the ONs that represent the behaviour of different systems.

•  And define explicit communication relations representing
any interactions that occur between these systems, so
constructing a Communication SON.

•  One advantage of this form of structuring is that we can hide
away the details of possibly quite complicated interactions.
(In doing so we can make use of temporal abstraction.)

•  Note: unlike behaviour relations, neither communications
relations, nor spatial or temporal abstraction relations,
actually increase the logical, as opposed to practical, power
of ONs.

14

Martinique, Jan. 2012

Communication Relations

15

As above, communication relations can hide many details of
the actual communications – using “temporal abstraction”

An
(unstructured)

ON

The equivalent
Communication

SON

Martinique, Jan. 2012

Temporal Abstraction and its Perils

•  Temporal abstraction replaces segments of an ON that start
and end with events by single (abstract) events

•  But this risks introducing a cycle
•  Hence the use of a synchronous communication relation (an

undirected arc) in (b) above to avoid causing a cycle to exist

16

Martinique, Jan. 2012

An Example of Spatial Abstraction

17

Typically spatial abstraction is used together with temporal abstraction,
and perhaps repeatedly, when seeking to structure a large ON

Martinique, Jan. 2012

Other SON Abstractions

•  So far just behavioural, communication, temporal and spatial
abstractions have been shown.

•  All have been defined rigorously, and basic theorems
formulated and proved about them, mainly concerning the
preservation of causality – these theorems provide the
theoretical basis for our planned tool building efforts. (So far,
just Communication SONs have been implemented in
WORKCRAFT.)

•  The other abstractions we have investigated support the
following further relations:

•  Information retention (for recoverability and for post hoc failure
analysis)

•  judgement (inline – for built-in error detection, and offline – in
support of post hoc analysis)

•  And we have investigated techniques for representing
incomplete, contradictory and uncertain evidence regarding past
system activity, e.g. that available to a police investigation, or an
accident enquiry.

18

Martinique, Jan. 2012

Failure Analysis
(of Complex Evolving Systems)

•  We plan to use SONs not just for computer systems, but also for criminal
investigation support systems (i.e. treating crimes as system “failures”).

•  Failure analysis can involve following links in ONs backwards from a
failure in order to identify causes (faults), and then forwards to identify
further errors and potential failures – a strategy that was the basis of the
“chase protocols”.

•  Behaviour relations between ONs in a SON can similarly be followed in
each direction, to trace fault-error-failure chains between a system and
the systems it created or controls.

•  Other types of relations between ONs can also be involved in such
analysis.

•  However, the actual identification of failures, errors and faults as such
requires additional information, e.g. obtained from system specifications,
or users.

19

Martinique, Jan. 2012

Word

Excel

it’s elementary!

Failure Analysis of Multiple Systems

b

b

b b

b b b

b b

b b

b

Martinique, Jan. 2012

A SON (thought) experiment

•  Ladbrooke Grove was the scene of a bad railway accident in October
1999, when a three-car Class 165 diesel train operated by Thames
Trains collided with a First Great Western High Speed Train

•  The immediate cause of the disaster – the diesel train passed a
particular signal when red.

•  A lengthy enquiry identified many more issues, and many systems
(rail companies, government organizations, drivers, trains, signalling
mechanisms, etc.) were implicated.

•  As a (thought) experiment we have considered how the huge mass
of evidence considered by the enquiry could be represented and
analyzed.

•  We have used the conventional Entity-Relationship graphical
notation, the entities in fact being individual (un-detailed) occurrence
nets, representing information about the activities of each of the
systems involved, the whole being a very large SON.

•  Our belief is that, with the right tool support, the use of a SON could
greatly aid the documentation and analysis of such a complex failure
situation.

21

Martinique, Jan. 2012
2222

22

Martinique, Jan. 2012

Concluding Remarks

•  We believe that SONs, and their ability to help reduce the
complexity of complicated activity records, and to deal simply
with evolving systems, are quite novel (and very promising).

•  Our planned future work involves some further theory
development, but mainly concerns the implementation of means
of representing and analyzing fully-general SONs in the
WORKCRAFT platform.

•  We plan to re-implement the platform’s existing system validation
and system synthesis tools so as to make use of SONs’ support
for communications, temporal, and spatial abstraction – the aim
being to demonstrate the ability to handle much larger and more
complicated problems than these tools can currently cope with.

•  Using also behavioural, data retention, and judgemental
abstractions, we will investigate the utility of SONs as an
infrastructure for a crime and accident investigation support
system.

•  This investigation is to be carried out in co-operation with a
leading commercial developer of such systems, who is interested
in enhancing their systems’ ability to perform analyses for very
large and complex investigations.

23

Martinique, Jan. 2012

Selected References
•  V. Khomenko, M. Koutny, A. Yakovlev: Logic Synthesis for Asynchronous

Circuits Based on Petri Net Unfoldings and Incremental SAT. Fundamenta
Informaticae 70, 2006.

•  http://www.cs.ncl.ac.uk/publications/inproceedings/papers/749.pdf
•  M. Koutny, B. Randell: Structured Occurrence Nets: A Formalism for

Aiding System Failure Prevention and Analysis Techniques. Fundamenta
Informaticae 97, 2009.

•  http://www.cs.ncl.ac.uk/publications/trs/papers/1162.pdf
•  B. Li, M. Koutny: Verification and Simulation Tool for Communication Structured

Occurrence Nets. CS-TR, Newcastle University, (to appear).
•  P.M. Merlin and B. Randell: State Restoration in Distributed Systems. Proc.

FTCS-8, 1978.
•  http://www.cs.ncl.ac.uk/publications/inproceedings/papers/347.pdf

•  I. Poliakov, V. Khomenko, A. Yakovlev: Workcraft - A Framework for
Interpreted Graph Models. LNCS 5606, 2009.

•  B. Randell, M. Koutny: Failures: Their Definition, Modelling and Analysis. LNCS
4711, 2007.

•  http://www.cs.ncl.ac.uk/publications/trs/papers/994.pdf
•  B. Randell, M. Koutny: Structured Occurrence Nets: Incomplete,

Contradictory and Uncertain Failure Evidence. CS-TR 1170, Newcastle
University, 2009.

•  http://www.cs.ncl.ac.uk/publications/trs/papers/1170.pdf

24

