On Emergent Misbehavior

John Rushby
With help from Hermann Kopetz

Computer Science Laboratory
SRI International
Menlo Park CA USA

John Rushby, SRI Emergent Misbehavior 1



John

Emergence

We build systems from components, but systems have
properties not possessed by their individual components

Emergence is the idea that complex systems may posses
properties that are different in kind than those of their
components: described by different languages

o e.d., velocities of atoms vs. temperature of gas

o e.dg., neuron activity in the brain vs. thoughts in the mind

Weak emergence: you can compute the emergent properties
from those of components (but only by simulation)

o Complicated vs. complex systems

Strong emergence: not so—interactions at emergent level
propagate back to the components (downward causation)

o E.g., flock flowing around an obstruction: motion looks
random to individual responding to actions of neighbors

Rushby, SR Emergent Misbehavior 2



Emergent Misbehavior
e [here’'s good emergence and bad

e In particular, complex systems can have failures not predicted
from their components, interactions, or design

e Emergent or just unexpected?

e Probably the latter, but in sufficiently complicated contexts
that it may be useful to consider these failures as different in
kind than the usual ones

e My speculation is that weak emergence explains most
e But maybe some are due to downward causation

e In any case, a possibly useful new way to look at failures

John Rushby, SRI Emergent Misbehavior 3



Examples

e Jeff Mogul's paper:

o Mostly OS and network examples concerning performance
and fairness degradation rather than outright failure

o e.g., router synchronization

o Note that these properties are expressed in the language
of the emergent system, not the components

e Feature interaction in telephone systems
e 1993 shootdown of US helicopters by US planes in Iraq
e West/East coast phone and power blackouts

e Massive freeway pileups

John Rushby, SRI Emergent Misbehavior 4



Even “Correct” Systems
Can Exhibit Emergent Misbehavior

e \We have components with verified properties, we put them
together in a design for which we require properties P, Q, R,
etc. and we verify those, but the system fails in
operation. .. how?

e [here’s a property S we didn’'t think about

o Maybe because it needs to be expressed in the language
of the emergent system, not in the language of the
components

o If we'd tried to verify it, we'd have found the failure

o But it's hard to anticipate all the things we care about in
a complicated system

e Call these unanticipated requirements

John Rushby, SRI Emergent Misbehavior 5



Even “Correct” Systems
Can Exhibit Emergent Misbehavior (ctd.)

e \We verified that interactions of components A and B deliver
property P and that A and C deliver Q, taking care of
failures appropriately

e But there’s an interaction we didn't think about

o We didn't anticipate that some behaviors of C (e.g.,
failures) could affect the interactions of A and B, hence P
IS violated even though A and B are behaving correctly
(and so is C, wrt. the property Q)

e Call these unanticipated interactions
(or overlooked assumptions)

John Rushby, SRI Emergent Misbehavior 6



Causes of Emergent Misbehavior
I think they all come down to ignorance

There is no accurate description of an emergent system
simpler than the system itself

All our analysis and verification are with respect to
abstractions and simplifications, hence we are ignorant about
the full set of behaviors

More particularly, we may be ignorant about

o The complete set of requirements we will care about in
the composed system

o The complete set of behaviors of each component
o The complete set of interactions among the components

John Rushby, SRI Emergent Misbehavior 7



How to Eliminate or Control Emergent Misbehavior
e Identify and reduce ignorance

e Eliminate or control unanticipated behaviors and interactions

o i.e., deal with the manifestations of ignorance

e EnNngineer resilience

o i.e., adapt to the consequences of ignorance

John Rushby, SRI Emergent Misbehavior 8



Identify and Reduce Ignhorance

Vinerbi, Bondavalli, and Lollini propose tracing ignorance as
part of requirements engineering

e Qualitatively quantify it (e.g., low, medium, high)
e Have rules how it propagates though AND and OR etc.

e If it gets too large, consider replacing a source of high
ignorance (e.g., COTS, or another system) by a
better-understood and more limited component

John Rushby, SRI Emergent Misbehavior 9



John

Identify and Reduce Ignorance (ctd.)
We have to try and think of everything
This is what hazard analysis is about in safety-critical systems
There are systematic ways to go about it (e.g., HAZOP)

But I think it needs to be put on a more formal footing

o And that automated support is needed

There are some promising avenues for doing this

o e.d., model checking very abstract designs

o Using SMT solvers for infinite bounded model checking
with uninterpreted functions

Rushby, SR Emergent Misbehavior 10



Identify and Reduce Ignorance (ctd. 2)

e Black and Koopman observe that safety goals are often
emergent to the system components

e e.9g., the concept (no) “collision” might feature in the
top-level safety goal for an autonomous automobile

e But “collision” has no meaning for the brake, steering, and
acceleration components

e That's why FAA certifies only complete airplanes and engines

e T hey suggest identifying local goals for each component
whose conjunction is equivalent to the system safety goal,
recognizing that some unknown additional element X may be
needed (because of emergence) to complete the equivalence

e An objective is then to minimize X

e Closely related to hazard analysis, in my view

John Rushby, SRI Emergent Misbehavior 11



Eliminate Unanticipated Behaviors and Interactions

e Behaviors and interactions due to superfluous functionality

o e.g., use of a COTS component where only a subset of
its capabilities is required

o Or functions with many options where only some should
be used

These can be eliminated by wrapping or partial evaluation

e Interactions that use unanticipated pathways

o E.g., A writes into B's memory
o Or tramples on its bus transmissions
o Or monopolizes the CPU

These can be eliminated by strong partitioning of resources

John Rushby, SRI Emergent Misbehavior 12



Control Unanticipated Behaviors and Interactions

e Unanticipated behaviors on known interaction pathways
o e.dg., unclean failures
o Local malfunction
These can be controlled by strong monitoring

o Monitor component behavior against system
requirements; shutdown on failure

o Monitor assumptions; treat source component (or self?)
as failed when violated

John Rushby, SRI Emergent Misbehavior 13



Engineer for Resilience
e Our diagnosis is very similar to Perrow’s Normal Accidents

e In his terms, we aim to reduce interactive complexity and
tight coupling

e One way to do both is to increase the autonomy of
components

o i.e., they function as goal-directed agents

o e.g., substitute runtime synthesis for design-time analysis
(both use formal methods, but in different ways)

e But then may be more difficult to design the overall system

o Actions of intelligent components frustrate system goals
o e.g., pilot actions on AF 447

e Overall system should become adaptive or autonomic
Using AI and machine learning

John Rushby, SRI Emergent Misbehavior 14



Summary

e Reductionist approaches to system design and understanding
may Nno longer be suitable

o Systems built from incompletely understood components,
and other systems
o System goals far removed from component functions

e \Widespread emergent misbehavior seems inevitable

o In some cases, can attempt to reduce emergence and
restore validity of reductionism

o In other cases, should embrace emergence and aim for
adaptation and resilience

e In Nno cases will it be business as usual

e Datum: safety critical code size in aircraft and spacecraft
doubles every two years (Holzmann)

John Rushby, SRI Emergent Misbehavior 15



