An Age-Old Question for Tomorrow:
Who Will Guard the Guardians ?

Algirdas Avizienis

Distinguished Professor Emeritus,
University of California, Los Angeles,
and
Vytautas Magnus University
Kaunas, Lithuania

IFIP WG 10.4,Martinique, January 27, 2012

Major Causes of System Failures

. Permanent physical failures (changes) of hardware components

. Interference by external environmental factors: cosmic rays, EM radiation,
excessive temperature, etc.

n u

. Previously undetected design faults (“bugs”, “errata”, etc.) in hardware
and software components of a system that cause errors during operation

. Malicious actions by humans that alter or stop delivery of expected service

. Unintentional mistakes by human operators or maintenance personnel
that lead to loss or undesirable changes of expected service

The Deficiencies of Current Defenses

1. There are unprotected “hard core” elements, especially in the error
detection and recovery management hardware and software

2. Hardware and software defenses are interdependent, thus both have to
succeed in order to complete recovery

3. There is no built-in support for multi-channel computing with or without
design diversity that provides tolerance of design faults

An Example of “hard core” and Interdependence

Pentium and Itanium processors have a Machine Check Architecture (MCA) in which
hardware errors are recorded by setting bits in a set of MCA registers that are not
protected by any form of redundancy or fault tolerance

The operating system then senses the MCA register bits and initiates recovery action

A Contemporary Paradox

Computing systems provide protective infrastructures
for critical infrastructures of modern society:
electrical power, telecommunications, transportation,...
but:
these computing systems do not possess
a protective infrastructure of their own!

My Goal:

To design a hardware-based fault-tolerant resilience infrastructure for
computing and communication systems, because it is needed as systems

progress towards ever higher complexity and speed of operation and are
employed in life-critical applications

Why “Resilience” Infrastructure ?

Resilience is the dependability of a system when it is subjected to
unforeseen changes of its structure (manifestation of unknown design
faults in hardware and software) and/or of its environment (intensive
radiation, temperature fluctuations, etc.)

The goal of the Rl is to protect the system when unforeseen changes occur

The term “robustness” is also used, especially in the terminology of
embedded systems, also “survivability”

Why All Hardware and Firmware ?

Because over the past half century hardware and firmware have not been
adequately exploited to assure the dependability of computing and
communication systems and because all software faults and vulnerabilities
are avoided

Desirable Properties
of the Resilience Infrastructure

The Rl is generic, i.e., suitable for a variety
of “client” systems

The Rl is transparent to the client’s software,
but communicates with it

The Rl is compatible with and able to support
the client’s other defenses

The Rl is fully self-protected by fault tolerance, immune to
the client’s faults and to malicious software

Four Building Blocks of the Rl

1. The Adapter (A-node): it provides the interface of the Rl to the components
(C-nodes) of the “client” system being protected

2. The Monitor (M-node): it receives error messages from the C-nodes and
issues predetermined responses via the A-node

3. The Startup, Shutdown and Survival node (S3-node): it responds to
catastrophic events by shutting down the system and protecting critical
information needed for startup, also manages M-node self-repair

4. The Decision node (D-node): it provides support for error detection in the
“client” system and implements communication between the Rl and the
“client” system

All four building blocks must be implemented in hardware and firmware of
proven dependability and are of relatively low complexity.

The “Ring” Representation of Rl

Outer Ring (OR)
“client” bus

N

The Adapter (A) Node

Transmits Error messages from C-node to M-cluster

Transmits Recovery commands from M-cluster to C-node

Controls the Power switch of the C-node according to commands from
M-cluster

Permanently disconnects its IR power by means of the Fuse upon a
command from the M-cluster

Uses the A-line to the M-cluster to report its own status and to request
access to the M-bus

Fault tolerance of the A-node is implemented as a “self-checking pair” of
A-nodes

Messages from the M-cluster are voted in the A-node

The A-node: Rl Interface with C-node

— — —— Error Messages

OR _ _
Power ~ — — - Recovery Commands
OR Switch Switch
Power Power
e - —— — | _Switch Control
A-line > <4 — — — A-/lne from S3-nodes

M-cluster M*

o U kW

The Monitor (M) Node

Is a member of the M-cluster M* of 3 or more M-nodes operating in
the TMR (triplication with voting) mode with unpowered spares
Receives Status (on A-lines) and Error (on M-bus) messages from all
A-nodes

Selects appropriate Recovery command from its ROM

Sends the Recovery command to the A-node via the M-bus
Communicates to other M-nodes by means of the Intra-Cluster (IC) bus
ROM data in the M-node consists of:

(a) Recovery command for every Error message (supplied by the
“client” system designers

(b) Sequences for M-node recovery and replacement in the M-cluster
with S3-node assistance

(c) Recovery sequences for catastrophic events that are initiated by the
S3-node array S3*

The Inner Ring IR

M-bus

A-lines

1
M-cluster core

Dynamic Data in the M-node Memory

1. Outer Ring (‘client”) configuration status: list of C-nodes (active, spare, failed).
2. M-cluster status: list of M-nodes (active, spare, failed)

3. System time

Note: the above data is also stored in every S3-node

4. Current activity: buffer storage for Error messages being serviced and service
requests from A-nodes that are waiting

5. The log of Inner Ring activity

Fault Tolerance of the M-cluster M*

1. M* depends on the S3-node array S3* for spare M-node activation and the
removal of power from failed M-nodes

2. Spare M-bus lines and error-coded messages and commands are employed

M* degrades to two and one M-node after spares are used up

4. The initial configuration of M* is triplication with voting and unpowered spares

w

w

The Startup, Shutdown, and Survival (S3) Node

The Array S3* of S3 nodes supports the recovery of the “client” system
(C-nodes) and of the entire Resilience Infrastructure Rl from catastrophic events:
intensive radiation, temporary instability of power supplies, fluctuations of
temperature, physical damage to system hardware, etc.

S3* controls Power-on and Power-off sequences for Rl and the “client”

S3* provides fault-tolerant clock signals for the R

S3* keeps System Time and System Configuration in non-volatile, radiation-hard
registers

S3* controls Power switches of M-nodes and Inner Ring power to A-pairs to
support M-cluster recovery

One S3-node is a “self-checking pair” that inhibits its output upon disagreement
An Array S3* of N S3-nodes will tolerate N-1 failures of individual S3-nodes when
their outputs are connected in a logical Or

Each S3-node is provided with a backup power source (a battery) in order to
tolerate temporary loss or instability of Inner Ring power

The M-Cluster M*

IR Power
M ISw
MEN ! M
IR . IR
Power Sw _ SWi«—Power
IC-bus S3 T |} | clock, “disagree”,
ST internal error, replacement request
IR —»Sw | Sw IR
Power / Power
M M

S3*is the S3 node array

The Decision (D) Node

1. The D-node is a communication link between the Outer Ring C-nodes and the
M-cluster

2. The D-node can provide an external voting and comparison service for C-nodes
3.The D-node can provide decision algorithms for N-version software that executes
on diverse C-node processors

4. The D-node can log disagreement data on the various decisions

5. The D-node employs only firmware (no software) and is implemented as a self-
checking pair for fault tolerance.

6. A-nodes are replaced by built-in A-ports that have all A-node functions.

7. The M-cluster and the S3-node array treat the D-nodes like the C-nodes.

The “Ring” Representation of Rl

Outer Ring (OR)
“client” bus

A Hierarchical Structure for the Resilience Infrastructure

One M-cluster is limited to servicing some number N (say 8) of C and D nodes.

Then a chip with 64 cores would need 8 M-clusters that have A-node functions, and
those M-clusters would be connected to a second-level M-cluster that receives inputs
from the 8 first-level M-clusters.

More generally, we can consider a Rl structure that has multiple levels. The figure
shows a three-level structure with M-clusters located at Chip, Board, and Chassis
levels. The structure can be extended to more levels. At the Chassis level peripheral
equipment can be connected — the figure shows a printer with its own A-node.

Every M-cluster has its own S3-array, therefore if any connection to a lower level
is disrupted, the branch that has been disconnected will function independently
until it fails or reestablishes the connection to the rest of the tree. At that time
the branch has to accept the critical parameters of that tree. That becomes
important if the M-bus and A-lines are wireless links and the C-nodes are mobile.

Hierarchical Structure of Rl

Chip 1 Chip n
C-node C-node
1 1
A-node| """ |A-node
<-A-lines--» M-bus
M-bus I | i
L ».|M-cluster <—T : M-cluster
| | === hliness—rr— > |
M-bus (Chip) i
L> M-clust. (board)<—T Printer
) _A-node
¢«———-A-lines-—-—-->
M-bus (Board) I ' Y
M-cl. (chassis) |[¢————

r M-bus (Chassis)

A\

A-line

Advantages of the Resilience Infrastructure

* Design exercise shows very moderate complexity

e Software is not used at all

* D-node enhances “client” fault tolerance

e “Client” defenses may be simplified, offloading some on RI
» Separation of Rl and client allows fault-tolerant design of Rl
e Every “client” customizes the Rl for its needs

* Hierarchical structure of Rl allows protection of large,
heterogeneous systems

* The Rl guards the guardians, that is, the Rl attempts recovery
when the defenses of the “client” are defeated and it calls for
help

Will the Resilience Infrastructure Be Used ?

| believe that the Rl offers significant advantages, compared to the current
implementations of fault tolerance, BIST, software monitors, and other
defenses. The absence of software removes the source of many problems,
and the complexity of the Rl hardware is quite modest.

However, there is a huge “legacy” problem — system design is a gradual
process that cannot readily accommodate a big change — the transition to
the inclusion of the resilience infrastructure.

For the above reason | have identified the human exploration of Mars as a
project that is sufficiently far in the future and also life-critical. For this
reason the use of the Rl could be considered in the initial definition of the
system.

It is important to note that any fault tolerance or other protective means
of that future system can be accommodated — the Rl is an additional
feature that will guard those guardians when a catastrophic event
threatens with disaster, although the Rl can handle simpler dangers as well

The Human Mission to Mars

Important studies have been done over the past 20 years:

D. Landau and N.J. Strange “This Way to Mars”, Scientific American, 306(6): 58-65
(December 2011).

“Special report: Sending astronauts to Mars”, Scientific American, 282(3): 40-63
(March 2000).

My concern: the survival of the spacecraft for the 1000-day human
mission to Mars

Assume: spacecraft systems are controlled by embedded computers
that have state-of-the-art fault tolerance

Remaining need: Assure resilience (robustness) of the systems:

provide defenses against unexpected, possibly catastrophic faults
and make the defense mechanisms self-protecting

My solution: Provide a hardware-based, fault-tolerant resilience
infrastructure (RI) for all spacecraft systems

References

[1] Avizienis, A.,”Self-Testing and -Repairing Fault Tolerance
Infrastructure for Computer Systems”,
United States Patent No. US 7,908,520 B2

March 15, 2011

[2] Avizienis, A. “Hierarchical Configurations in
Error-Correcting Computer Systems”,

United States Patent No. . US 7,861,106 B2
December 28, 2010

