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Robust System Design

Perform correctly despite complexity & disturbances

e Complexity: detect & fix design bugs
e CMOS reliability limits: tolerate errors

e Beyond silicon-CMOS: imperfection-immune logic




What’s New ?

e Existing approaches: inadequate, expensive

Traditional Thinking New approach

Design bugs Pre-silicon Post-silicon

Reliability failures Avoid Tolerate at low cost

Imperfection-immune
design

Beyond

silicon-cMos | Material processing
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e Introduction
e CMOS reliability limits: tolerate errors
e Beyond silicon-CMOS: imperfection-immune logic

e Conclusion




Technology Reliability Challenges

Comb. logic
e System soft error rates increasing

= Fatal flip-flop errors %

Soft error rates

e Early-life failures (ELF)

= Burn-in: difficult, expensive

e Circuit aging & variations

= Worst-case guardbands expensive




Low-Cost Resilience

Circuit Failure Prediction
New failure signature - ultra low-cost
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Software-orchestrated global optimization a MUST




BISER: Built-In Soft Error Resilience

Weak keeper

Combinational
logic

OouT

C-element

Redundant Latch (Scan Test & Debug reuse)

45nm: up to 1,000X fewer errors vs. D-flip-flop




Single Error Assumption Inadequate

e Single event multiple upsets increasing

LEAP: Layout by Error Aware transistor Positioning
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2,000X fewer errors vs. D-flip-flop




Optimized Resilience Essential

Select application-critical Optimize for cross-layer
flip-flops resilience

Chip-level
error rate
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% flip-flops critical logic parity, BISER for rest




Low-Cost Resilience

Circuit Failure Prediction
New failure signature - ultra low-cost
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New Gate-Oxide ELF Signature

e Delay fluctuations over time

Stress time >

= Before functional failure T T T

ELF Delay ﬂﬁctuation S
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e Demonstrated: 45, 32nm

‘ Fqnptipngl ‘Fa‘ilu‘re

= 28, 22, 15nm In progress

o o o
MEEET:

n el X3

ii
il [
H REBLRUE

e Enables

= On-line failure prediction




On-line Failure Prediction

Failure Prediction Error Detection

Before errors appear After errors appear

+ No corruption — Corrupt data & states

+ Low cost — High cost

+ Self-diagnostics — Limited diagnostics

How ?

On-line self-test and diagnostics




On-Line Self-Test and Diagnostics

On-line self-test & diagnostics

CASP OpenSPARC T2 SoC

High on-line test coverage

No visible system downtime Uncore very important

1% power, 1% area, 3% performance impact
Ultra low-cost
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Carbon Nanotube FET (CNFET)

£F 1 Carbon Nanotube (CNT)
2.4 Diameter (D) : 0.5-3 nm

Lithographic Gate

CNTs

/T~

Substrate

CNT doped region




Ideal CNFET Inverter




CNFETs: BIG Promise, BUT
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Collaborator: Prof. H.-S.P. Wong, Stanford




Mis-positioned CNTs: Incorrect Logic




Mis-positioned-CNT-Immune NAND

1. Grow CNTs




Mis-positioned-CNT-Immune NAND

1. Grow CNTs

2. Extended gate & contacts

CRUCIAL




Mis-positioned-CNT-Immune NAND

Vdd
1. Grow CNTs

2. Extended gate & contacts

3. Etch gate & CNTs

4. Dope P & N regions




Mis-positioned-CNT-Immune NAND

Vdd
1. Grow CNTs

2. Extended gate & contacts

3. Etch gate & CNTs Etched

4. Dope P & N regions region

ESSENTIAL




Mis-positioned-CNT-Immune NAND

1. Grow CNTs

2. Extended gate & contacts
3. Etch gate & CNTs

4. Dope P & N regions

e Graph algorithms

= All possible functions
o VLSI

= Processing & design

Vdd

Etched
region
ESSENTIAL




VMR: VLSI Metallic CNT Removal

e Metallic-CNT-immune design

©® Sufficient: all possible logic designs

® VLSI processing & design




F|rst Wafer-Scale Allgned CNT Growth

%9 Quartz wafer
2% with catalyst

—)

Aligned
CNT growth

Quartz wafer Before transfer After transfer
99.5% CNTs aligned Quartz substrate SiO./Si substrate
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First Experimental Demonstrations

Imperfection-immune circuits VLSI Integration
Arithmetic & storage Wafer-scale & monolithic 3D

Conventional via,
NOT TSV
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CNFET Variations Significant

Energy penalty

Veryf‘

high Naive transistor upsizing

Metallic Grown
CNT CNT
induced density

Others
No

CNFET I, variations design
change Unique layouts

+ Co-optimized processing
Low (0%) Yield High (99‘%3+)
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Concluding Remarks

e Derive failure signatures
e Utilize failure signatures

e Validate failure signatures

_—

Enable
Nanotechnology Revolutions
&

A TRULY Better Tomorrow




