TU Wien

A Methodology for the Design of System of Systems (SoSs)

H.Kopetz January 2011

Outline

- Introduction
- System of Systems
- Architectural Style
- Autonomic Component
- Emergence
- Conclusion

Why are SoS Becoming so Important?

The available technology (e.g., the Internet) makes it possible to interconnect *independently* developed systems (legacy systems) to form new system-of-systems (SoS).

The integration of different *legacy systems* into a SoS promises more efficient economic processes and improved services.

Examples: Power distribution, Car-to-car communication, air-traffic control, banking systems

Monolithic System versus SoS

Mono	lithic	System	Sy
------	--------	--------	----

single organization

obedient

integration control

single organization

hierarchy

single goal

coordinated

controlled

same in all subsystems

System of Systems (SoS)

different organizations

autonomous

interoperation *influence*

international standard

mesh

multiple goals

not coordinated

unanticipated

different

•

Sphere of control

Subsystems are

Composability

Interface Control

Goal orientation

Architectural Style

mechanism

Structure

Evolution

Emergence

Purpose of an SoS

Constituent Systems (CS) are integrated by an Interaction Doman (ID) to realize a well-defined purpose:

- The purpose is achieved by *voluntary* cooperation and not by *enforced control*.
- The SoS must provide incentives that a CS contributes to the purpose of the SoS.
- In an SoS it can be chosen dynamically which CS is to provide the needed services.

Example: Electric utility energy provider

Structure of an SoS

A CS can be involved in more than one ID

Evolution

- Constituent (legacy) systems evolve according to their own objectives, which are not always in line with the SoS objectives.
- The SoS must cope dynamically with this divergence of objectives and try to optimize the overall utility.

Structure of an SoS

Services of the Coordination Entity (CE)

- Coordination service
- Configuration service
- Security service
- Discovery service
- Diagnostic services
- Continuous validation service

The *relied upon interface properties* of the Linking Interfaces must be precisely specified and continuously monitored –requires a precise gateway LIF specification.

Linking Interface (LIF) Specification

The integration of the legacy systems is achieved by message exchanges across well-defined *Linking Interfaces (LIF)*.

A linking interface specification consists of three parts:

- Transport specification
- Syntactic Specification
- Semantic Specification

Transport LIF Specification

The transport of *uninterpreted bit streams* is the subject of the *transport specification*.

It covers:

- Addressing
- Authentication of sender
- Temporal issues (timing, flow control, congestion control)

The Internet protocols provide a universal solution to the transport problem of non time-critical data.

Syntactic LIF Specification

The syntactic LIF specification establishes the syntactic interoperability of legacy systems:

- structures the bit stream of a message into syntactic units
- assigns local names to the syntactic units
- Involves the end systems, not the transport system

Semantic LIF Specification

The semantic LIF specification establishes the semantic interoperability of legacy systems

- It assigns meaning to the syntactic units
 established by the syntactic LIF specification
 by referring to an interface model.
- Semantic content must be captured, despite differences in the representation in the different legacy systems
- Difficult, if different conceptualizations are maintained in the different legacy systems.

Architectural Style

- Under the term architectural style we subsume all explicit or implicit principles, rules and conventions that are used in the development of a system.
- Different organization deploy different architectural styles.
- Whenever two systems, based on different architectural styles, are connected, *property mismatches* surface at the interfaces.

Examples of a Property Mismatch

- Endianness of data:—the ordering of the subunits (e.g., bits or Bytes)
- Naming Incoherence: Different names for the same concept or the same name for different concepts
- Representation: Different representations of the same physical quantity (e.g., temperature)
- Concepts: Different conceptualization of reality

Coherent End-Systems

If the end systems are *coherent*, i.e., if there are no property mismatches between the end systems, then the end-systems can be connected by any appropriate communication system without a *mediator*.

Incoherent End-Systems: Semantic Content

Consider the two variables

T-Luft = 30

and

T-air = 86

on the surface there is a *property mismatch*: different names and different values

but the *semantic content* of both variables is the same.

How to Resolve Property Mismatches?

Property mismatches occur if the end system are non-coherent, i.e. based on different architectural styles.

There are two techniques to resolve property mismatches:

Worldwide Standardization (Esperanto)

or

Mediator (Gateway Component)

World-wide Standardization

- Development of Domain Ontologies to establish a universally accepted conceptualization and name space of an application domain (e.g., electricity load balancing)
- Ontological Commitment to use the specified ontology in each of the legacy systems.

Structure of an SoS

Interaction Domain for a purpose

Mediation by a Gateway

Whenever two systems that are developed according to different architectural styles are connected, a mediator, i.e. a *gateway component*, must be provided to resolve property mismatches.

Mediator--Gateway

Emergence

- The interactions of legacy systems give rise to unique global properties at the system level that are not present at the level of the subsystems—the emergent properties.
- Emergent properties are irreducible, holistic, and novel—they disappear when the system is partitioned into its subsystem.
- Emergent properties can appear unexpectedly or they are planned. In many situations, the first appearance of the emergent properties is unforeseen and unpredictable.

Prior and Derived Properties

- When dealing with emergence, it is helpful to distinguish between the *prior properties* of the components and the new *derived properties* that come about by the interactions of the components.
- In many cases the prior properties and the derived properties can be of a completely different kind.
- It often happens that the *derived properties* open a completely new domain of science and engineering that requires the formation of novel concepts that capture essential properties of this new domain.

Example: Worldwide Banking System

The world-wide interconnection of and the autonomic trading among the banks has resulted in complexities and the emergence of a world-wide banking crisis that cannot be reduced to the behavior of any individual bank.

Alan Greenspan:

"...if I didn't understand it, and I had access to a couple of hundred PhDs, how the rest of the world is going to understand it sort of bewildered me."

quote from A.R. Sorkin, Too Big To Fail, p.90

Research Issues in *Embedded SoS*

- Emergence
- Safety and Security in dynamic SoS
- Robust Service in the face of system evolution
- Semantic interface specification
- Autonomic components and knowledge representation
- Opportunistic flexibility

Conclusions

- The interconnection of existing legacy systems into Systems-of-Systems opens a set of fascinating new research topics.
- The provision of *stable global SoS services*, in the face of *system failures*, *intrusions*, and continuous system evolution, is a most important challenge.
- The development of an understanding of the topic of emergence, which at present is not well understood, requires a substantial effort from the research community.