
© 2008 IBM Corporation
IBM Confidential

Lisa Spainhower

June 26, 2010

Analytics and Virtualization:
Diagnostic Toolkit for the ’10s

© 2008 IBM Corporation IBM Confidential 2

Problem determination in complex IT enterprises is a major pain point
•  Bridge calls and finger-pointing

Not necessarily true that anything is ‘broken’ and can be ‘fixed’
•  Incompatibilities

•  Configuration mis-matches

Tasks are complex and skill-intensive

•  Many processes, steps, tools

•  Often multiple vendors to coordinate

Multiple simultaneous faults are common
•  Defects

•  Defect plus operational/automation problem

•  Main line plus recovery

Problem Determination Challenges

© 2008 IBM Corporation IBM Confidential 3

Problem Determination Challenges

•  Customer view of sick, but not dead
–  20 % of problems
–  Long duration – generate 80% of business

impact
–  Hard to diagnose (ghost problems)

•  Every problem is unique
•  Can be triggered by any area of software or hardware
•  Occur infrequently
•  Cause sympathy sickness (creeping failures)

–  Hard to determine what actions to take to recover
•  Cause of “sick, but not dead”

–  Review of significant number of incidents has
identified the following generic causes

•  Damaged systems
–  Recurring or recursive errors caused by software

defects anywhere in the software stack
•  Serialization

–  Priority inversion
–  Classic deadlocks
–  Owner gone

•  Resource exhaustion
–  Physical resources
–  Software resources

•  Indeterminate or unexpected states

“Systems don’t break, they just stop working and we don’t know why”

‘Sick, but not Dead’

Hard Failures

Masked
failures

•  Characteristics of sick, but not dead
•  Hard for component to detect internally
•  Probabilistic not deterministic

© 2008 IBM Corporation IBM Confidential 4

Problem Detection and Determination Procedures
Traditional Practice

•  Near-zero resources permitted

•  Reasonable when computing cost
>>>people cost

•  Instrumentation doesn’t help PD

•  Real time behavior statistics used
only by ‘high priesthood’

•  Underlying control principle is a priori
understanding of behavior

•  Tuning assumes known set of
meters and knobs

•  Dependent on thresholds and alarms for
problem notification

•  Must be watching the right ones and
set them accurately

•  Correlation can be very hard

Machine Learning
•  Observe from hypervisor

•  Maintenance partition
•  Now makes sense economically

•  Observes low-level instrumetation
•  Models obtained from historical data

analysis

•  Induces meters and knobs

•  Models learn what’s normal and adapt to
change

collect
operating
 behavior

normal
behavior

build/
tune

model

run
model

problem?
control
system

no

yes

training

Virtualization provides out-of-band platform for effective machine learning
without agents or modifications to VMs

© 2008 IBM Corporation IBM Confidential 5

Why a Changing Role For Virtualization?
•  Intersection of trends

 Rapid adoption of virtualization
 growing customer need for availability, and
 soaring management costs

•  Investigation of virtualization as management tool to provide customer benefit
–  Availability is an excellent exemplar but applicability to other domains: security,

performance and tuning, power, etc.

•  Availability management has notable benefits
–  Working “outside the OS” generalizes availability management

•  Can manage the availability of VMs, regardless of what is in them
–  A small set of availability management functions can be defined and implemented

at the VM level that may satisfy a broad swath of customers
•  Can address management complexity concerns

–  Dedicated “management partition” offers a “place to stand”, i.e. a way of providing
availability (and other) functionality while meeting deployment constraints

© 2008 IBM Corporation IBM Confidential 6

Virtualization and Machine Learning

collect
operating
 behavior

normal
behavior

build/
tune

model

run
model

problem?

control
system

no

yes

training

 Predict and identify system resilience state
•  Eliminates downtime whenever possible
•  Simplifies complex problem determination

•  Take full advantage of live migration to avoid downtime

•  Signal/respond to drift from normal

•  Pinpoint faults to aid problem determination

•  Fingerprint workload for customized actions

© 2008 IBM Corporation IBM Confidential

Example #1

•  Application failures

•  Guest OS failures

•  Configuration bugs

•  Resource starvation

•  Hardware failures

Goal: general framework for detection, based on the observed
behaviour of the guests

Vigilant: Out-of-band PD for Virtual Machines

© 2008 IBM Corporation IBM Confidential

General concept for identifying component problems

•  Build a model of normal machine operation using
–  Data from similar machines, or
–  Data from the same machine over a start-up period

•  At runtime, classify each reading into one of the model's states
–  Normal/abnormal
–  Functioning/faulty

Vigilant

© 2008 IBM Corporation IBM Confidential

General concept for identifying component problems

•  If the classified state is problematic, take corrective actions:
–  More resources
–  Migration
–  Save
–  Kill

•  If corrective action did not solve the problem, escalate to the next
corrective action
–  More complex policies possible

Vigilant

© 2008 IBM Corporation IBM Confidential 10

Out-of-band monitoring

•  Observe the stream of requests and responses through the
hypervisor API:

– CPU utilization
–  I/O

– Network traffic
– Memory usage

– Swap activity

•  Periodically sample to obtain measurement vectors

•  Apply machine learning to vectors

Vigilant

© 2008 IBM Corporation IBM Confidential 11

Example #2

Melody: A maintenance partition running machine learning
applied to log messages to determine those most likely to
indicate a problem.

© 2008 IBM Corporation IBM Confidential 12

Operational GUI
Analytics
Modeling

How does a utility partition work?
Utility

Partition OS OS

LPAR

infrastructure

Server

Log 1 Log 2

Customer TCP/IP: Hyper sockets

Log client Log client

Log 1 Log 2

Web Server -
DOJO

 XML

File System

On customer

disk

SE

Utility partition
• “Agent less” uses existing data from operating system
•  Completely managed from the operational GUI
•  Results provided by web server for humans and external
managers
• Operating system data transported over TCPIP

OS
Log 1 Log 2

Log client

Melody

© 2008 IBM Corporation IBM Confidential 13

Problem Description

 System logs are a major tool for diagnosing problems

 However:

 Millions of text lines per day
–  250MB – 1.6GB of text

–  Manual sifting – impossible
–  Search is difficult when you don’t know what to look for

–  Most log messages are not self explanatory

 System administrators are often not familiar with all
components

 Simply recognizing that something is going wrong can be
hard

Melody

© 2008 IBM Corporation IBM Confidential 14

Problem Description cont.

 Need a tool that will

  Point at potential problems

  Make the log more human-readable

•  Some challenges
–  No labeled examples: requires unsupervised machine learning

–  Minimal use of domain experts

–  Should complement existing rule-based solutions

Melody

© 2008 IBM Corporation IBM Confidential 15

Machine Learning Paradigm

Melody

© 2008 IBM Corporation IBM Confidential 16

Solution sketch Pre Process

•  Collect a training set of (mostly problem-free) logs

•  Split logs into manageable parts (time frames)

Training:

•  Use unsupervised machine learning to model normal
activity
–  Statistics of message appearances
–  Identify message appearance patterns (clustering)
–  Model periodic activity

Analysis:

•  Point out anomalous time frames

•  Rank messages within time frames by their anomaly

•  Present the intervals in human-readable form

Melody

© 2008 IBM Corporation IBM Confidential 17

Sysplex view

VM
name

Hour of day

Bar height:
number of unique
message IDs

Bar color: rarity

Selected time-frame

Melody

© 2008 IBM Corporation IBM Confidential 18

Time-frame summary

•  Sorting options:
rarity, critical words, component, message ID, message clusters

Melody

© 2008 IBM Corporation IBM Confidential 19

Transplay: Record and replay of an application container

Used to debug difficult software bugs

Example #3

OS

A
PP

LI
C

AT
IO

N

A
PP

LI
C

AT
IO

N

A
PP

LI
C

AT
IO

N

A
PP

LI
C

AT
IO

N

A
PP

LI
C

AT
IO

N

© 2008 IBM Corporation IBM Confidential 20

Record and Transplay

•  Transplay is an integrated tool that

– Efficiently records hard-to-reproduce bugs as they occur in
production

– Replays the same execution in a completely different environment,
potentially running a different operating system

•  Transplay prototype is able to record bugs in Linux applications and
replay them on Microsoft Windows

•  No application modifications needed

Transplay

© 2008 IBM Corporation IBM Confidential 21

Application Recording
• Application is treated as a black-box and all “inputs”

that enter the application are recorded

  Inputs include
  Data read from files, network sockets etc.
  Parts of application binaries accessed by the application
  Data returned by the OS via system calls

  Memory pages read by the application

read stack
page

Application Fault

Time

read()
memory
read read()

Execute strcpy function
in libc at page
0xb75f3000 gettimeofday()

memory read syscall memory read

syscall syscall
syscall

syscall syscall

Transplay

© 2008 IBM Corporation IBM Confidential 22

Partial Checkpointing
• Checkpoint: Complete intermediate state of a

running application at a point of its execution
• Partial checkpoint: Partial state of an application

necessary to replay its execution for a specified
recording interval

Specified recording interval: 50 ms

read stack
page

Application Fault

Time

read()
memory
read read()

Execute strcpy function
in libc at page
0xb75f3000 gettimeofday()

memory read signal memory read

syscall signal
syscall

syscall syscall

Transplay

© 2008 IBM Corporation IBM Confidential 23

Partial Checkpointing (cont)

  and primitives control partial checkpointing
– Arbitrary periods of application’s execution can be recorded for later

reexecution
– Start: Record the processor context, start monitoring the application
– Stop: Save the accumulated log data

•  A partial checkpoint consists of:
– Processor context at the beginning of the recording interval
– Memory pages accessed by the application
– Results of system calls made by the application
– Meta data necessary for deterministic reexecution: interleaved shared

memory accesses, signals

© 2008 IBM Corporation IBM Confidential 24

Replay Across Operating Systems

•  Partial checkpoint is self-contained

–  All data needed by the application comes from the log; hence
underlying operating system doesn't matter

•  Application’s interface with the underlying OS is virtualized

–  Enables an unmodified Linux binary to run on Microsoft Windows

•  Use binary instrumentation (Pin) to transparently

–  Intercept Linux system calls on Windows

–  Resolve memory conflicts by transposing memory references

© 2008 IBM Corporation IBM Confidential 25

Replay

•  Application’s address space partially reconstructed
–  Large portions of application's address space left empty before

transferring control to the application

•  Control transferred to the application by loading the
processor state

•  Application’s requests are satisfied by replaying the
precomputed results observed during recording

