America's Most Wanted - a metric to detect persistently faulty machines in Hadoop

Dhruba Borthakur and Andrew Ryan dhruba,andrewr1@facebook.com Presented at IFIP Workshop on Failure Diagnosis, Chicago June 25, 2010

Overview

- Size and scale of Hadoop warehouse cluster
- Categorize failures that re-occur
- Monitoring tools for system health
- Americas Most Wanted Metric

Primary Challenge: Growth and more Growth!

Recent Growth of Hadoop Data (TB of data)

Data Flow Architecture at Facebook

Hadoop Warehouse @ Facebook

Hadoop Warehouse

- 16000 cores
- Raw Storage capacity ~ 21PB
- 8 cores + 12 TB per node
- 32 GB RAM per node
- Two level network topology
 - 1 Gbit/sec from node to rack switch
 - 10 Gbit/sec to top level rack switch

Statistics per day:

- 800TB of I/O per day via Hive queries
- 10K 25K Hadoop jobs per day

Types of Applications

Reporting

- Daily/Weekly aggregations of impression/click counts
- Measures of user engagement
- Microstrategy reports

Ad hoc Analysis

- how many Page administrators per state or country
- Machine Learning (Assembling training data)
 - Ad Optimization
 - User Engagement as a function of user attributes
- Index Generation
- A/B Testing

Analysis and Data Organization

- 99% of analysis through Hive on Hadoop
- Hive
 - Easy to use
 - Familiar SQL interface with Data as Tables and Columns
 - Easy to extend
 - Can embed map/reduce user programs in the data flow
 - Support for user defined functions
 - Flexible
 - Supports user defined data formats and storage formats
 - Support user defined types
 - Interoperable
 - JDBC, ODBC and thrift interfaces for integration with BI tools

Types of Failures

System Errors

- Hardware, OS, jvm, hadoop, compiler, etc
- Hadoop aims to reduce the effect of this broad category of errors

User Application Errors

- Bad code written by an user
- Bloated memory usage

Anomalous Behaviour

- Not working according to expectation
- Slow nodes
- Causes most harm to Hadoop cluster

System Errors

Operating System Errors & Hardware Errors

- Bad network card on rack switch
- ECC memory corruption

Hadoop Framework Errors

- JVM bugs
- Fails to fetch map output
- No live datanodes contain block

Configuration Errors

- Code not deployed on some nodes (e.g. older version of jetty)
- Gcc libraries on some nodes incompatible with LZO libraries

User Errors

Hadoop Tasks can be written in any language

- A Python dictionary can consume lots of memory
- Python might not be installed on some nodes
- A map script written in Python has a syntax error
- Logical errors

More frequent than System Errors

- Very important to propagate appropriate message to user
- Challenge to propagate error messages from lower levels in the software stack to the user

Monitor Hadoop Health

Trends and offline analysis

- Hadoop History logs contain information about completed jobs
- Push History logs into Hive tables every hour
- Produce reports into a mysql database
- Plot visual reports

Online analysis

- Generate extended metrics via Hadoop Metrics
- Hadoop Server's expose metrics via JMX
- Pull metrics into an RRD Tool
- Visual dashboard

Plot of Hadoop Server Exceptions

 Exceptions peaked on 06/01 when a bad app deleted mapred system dir in /tmp

Adhoc queries: does python jobs eat more CPU?

- 5% of all jobs in cluster are written in Python
- 15% of cluster CPU is consumed by Python jobs
- 20% of all failed jobs are written in python

Warehouse Utilization and Workload

Compute Map-Reduce cluster is CPU bound

- Peak usage of 95% CPU utilization
- Peak network usage is 70% (network is not a bottleneck)
- 70% tasks find data on local rack
- We do not compress map outputs

Storage HDFS cluster is capacity bound

- 75% storage full (current size is 21 PB, 2000 nodes)
- Disk bandwidth used is 20% of capacity (IO is not a bottleneck)
- All Hive tables compressed using gzip

How do we fix Errors?

Hadoop is fault-tolerant

- Node is blacklisted if tasks from multiple jobs fail repeatedly

Homegrown Diagnostics scripts

- Pings nodes periodically
- Checks disks, memory, etc. to find bad nodes
- Instructs hadoop to exclude bad nodes

Anomalies

Types of observed anomalies

- A anomalous node runs slower than other nodes
- Time on a anomalous node progresses slower than the other nodes
- Data transfer rate from an anomalous node is an abysmal 10 KBps
- Transient Bursty ECC errors from memory module
- Rebooting a machine may appear to fix most of these problems, but may actually mask the real problem.

Anomalies are difficult to detect

- Hadoop is not very good at handling these scenarios
- Difficult to configure diagnostics tools to account for different types of hardware: How fast should this machine be processing jobs?

Anomalies: Crowd Sourcing to the rescue

Harness Hadoop users to detect Anomalies

- Our cluster has 50 100 simultaneous users at peak load
- A interactive user sees that task on machineX take a longer time
 - Clicks on speculate-this-task button on a UI screen
 - Hadoop speculatively starts execution of another instance of that task

Detect Persistent Anomalies (work-in-progress)

- Many users sees slow behavior of their tasks on machineX
- All those users click on *speculate-this-task* button
- Blacklist machineX from Hadoop cluster

Task Attempts	Machine	Status	Progress	Start Time	Shuffle Finished	Sort Finished	Finish Time	Errors	Task Logs	Counters	Actions
attempt_000_0	machineXm.	RUNNING	0.00%	7-Jun-2010 04:30:37					Last 4KB Last 8KB All	7	Kill Fail Speculate

Hadoop Workload is bursty

Our observation: failures increase when load increases

Failure rates caused us to split Warehouse

Started with one Hadoop cluster

- Bad adhoc jobs consume tons of memory, machine hangs
- Large adhoc job prevented fairshare of resources
- Impacts periodic pipeline jobs that affects company's revenue

Solution: split cluster into two

- PLATINUM Hadoop Cluster
 - High SLA, only approved jobs can run here
- SILVER Hadoop cluster
 - Lower SLA
 - Optimize latency for small jobs
 - Optimize cluster utilization and fair-share for larger jobs
 - Resource aware scheduling (CPU and memory resources only)

America's Most Wanted (AMW)

Human Social System

- Small percentage of criminals in society
- Responsible for large percentage of crimes
- Repeat offenders
- Requires intervention by law enforcement
 - Three-strikes law

Machine Recidivism

- Small percentage of bad machines in cluster
- Responsible for large percentage of failures
- Requires intervention from automated tools
 - Weed them out
 - Escalate to vendor, or to internal hardware/kernel teams

AMW Metric

- What are their characteristics?
 - "Repeat offenders"
 - These machines occasionally hang or processes tasks slowly
 - They issue more alarms
 - They require more intervention from our automated tools (reboots, reimages, restarting processes, etc.)
 - They generate more repair events
- We are building a metric which takes all these "likely repeat offender" characteristics into account

Analysis of Hardware Repair Events

- Repair events mean "manual intervention"
 - Machine cannot be fixed by automated tools
 - Requires a "touch" by a datacenter technician
 - Means we have exhausted our automated remedies
 - Could be an actual hardware problem
 - Could also be configuration error
- Repair events are usually precipitated or accompanied by some loss of functionality, speed, or data
 - Slow tasktrackers can substantially reduce job completion rates
 - Datanodes with failing disks should be decommissioned
- Is Hadoop inherently "tougher" on machines than other applications?

Hardware Repair Rates Across Tiers

- We studied repair rates for a large sample of servers in Facebook's infrastructure
- Repair rates and frequencies are highly tier-dependent

Tier	Machines in	Machines never		
	repair at least once	in repair		
Hadoop	18%	82%		
Web	70%	30%		
Database	8%	92%		
Photo Storage	15%	85%		

AMW Work in Progress

- Develop comprehensive scores for tiers and SKU's
- Identify repeat offenders earlier
 - get them out of the system
- Gather better data on root causes of failures
 - especially multiple failures

Hadoop Datanode/Tasktracker Tier

Hadoop Datanodes

3% of machines account for 43% of repair events

Front End Webservers Tier

Front End Webservers

6% of machines account for 45% of repair events

Database Tier

Photo Storage Tier

Photo Storage

What happens if Disaster Strikes?

What if there is an oil-spill in California?

- Actually, earthquakes are more likely!
- Entire cluster can be out of service
- Backing up 20PB is impossible

Separate a small storage & compute cluster

- Select small subset of data from production warehouse
- Move this to a remote geo (work-in-progress)
- Poor man's Disaster Recovery Solution (DR)

Conclusion

Failure Analysis

- Monitoring of failures is a must for distributed systems
- Crowd Sourcing can lend a helping hand
- Repeat offenders quickly quarantined

More details

- Facebook blog at http://blog.facebook.com/
- Hadoop blog at http://hadoopblog.blogspot.com/