
Construction & Validation of SOA
Applications with Web Services

58th. IFIP 10.4 WG Meeting – Chicago – June/2010

Universidade Federal de Alagoas
Instituto de Computação

  According to World Wide Web Consortium
(W3C), a WS:
◦  Is a software system designed to support

interoperable machine-to-machine interaction over a
network

◦  Has an interface described in a machine-processable
format – WSDL (Web Service Definition Language)

◦  Communicates with other WS using SOAP-messages,
typically conveyed using HTTP

◦  Can be discovered and connected to an application
during runtime

  What is robustness:
◦  IEEE Std. Glossary:

« The degree to which a system or component can function
correctly in the presence of invalid inputs or stressful
environmental conditions »

◦  Can be interpreted as system ability to:
  Tolerate external faults

  Handling exceptions

  Tolerate attacks

  Why is robustness important for Web
services?

◦  WS-based architectures are promising for the
development of omnivalent systems, which are
systems which must present characteristics such
as ubiquity, dependability and security

(SBC - Grand Research Challenges in Computer Science in
Brazil from 2006 to 2016)

  Workload
◦  How to generate inputs to exercise WS operations?

  Faultload
◦  What faults to inject?

  Fault injector
◦  How to inject the faults?

  Robustness failures identification
◦  How to characterize service mal-functioning?

  Workload
◦  How to generate inputs to exercise WS operations?

  Faultload
◦  What faults to inject?

  Fault injector
◦  How to inject the faults?

  Robustness failures identification
◦  How to characterize service mal-functioning?

Request
(SOAP msg)

Injected request
(SOAP msg)

Service
Under Test

  WSInject – fault injector
  Injects faults to test a service or a
composition of services

Client

  Workload
◦  How to generate inputs to exercise WS operations?

  Faultload
◦  What faults to inject?

  Fault injector
◦  How to inject the faults?

  Robustness failures identification
◦  How to characterize service mal-functioning?

  There are several ways to classify robustness
failures [Vieira 2009]:

◦  CRASH scale of the Ballista approach, adapted to the
WS context – wsCRASH :

  Catastrophic: application server crashes or reboots

  Restart: WS execution hangs

  Abort: abnormal termination of the WS

  Silent: after a timeout, no error is indicated

  Hindering: incorrect error code or delayed response

  From the point of view of WS consumer,
only Abort and Silent are observable
◦  A system can fail without aborting or delaying

responses or sending error messages

◦  For example:

  in an Elevator service, if there is a requestUP
(floorID), then the Elevator should moveUp(),
stopAt(floorID) and opendoor() or else it stays in
the same floor

  In case of a request to a valid floor, if the Elevator
opendoor() before stopAt(floorID), a failure occurs

  Use of a passive testing approach:
◦  Similar to monitoring:

  Observes the exchange of messages (inputs and outputs)
of an implementation under test during runtime trace of
messages

◦  Analyze trace to detect anomalous behaviors

  Compare with properties :

  derived from standards

  derived from formal specifications

  obtained from hazard analysis

  proposed by experts

  What properties to analyze:
◦  For the moment, only safety properties are being

considered: something bad never happens during
execution

◦  If something bad happens a robustness failure
is identified

  How to express the properties:
◦  Regular expressions, as they are good to

represent allowable sequences of interactions

  Detection of incorrect sequencing is useful:

  It can be the failure itself or the cause of a failure

  Which algorithm to use to analyze the trace?
◦  Traditionally, in passive testing based on properties

analysis pattern matching

◦  We get inspiration on Bioinformatics: algorithms used
for the alignment of two DNA sequences

  It is possible to take into account semantic aspects, not
allowable in pattern matching algorithms

  Use of a scoring system

  It is possible to detect insertions, deletions or replacements
of one or more inputs or outputs in the sequence

  It is possible to obtain some statistics, as for example,
number of matches and mismatches

 Pass
Verdict: Fail

 Inconclusive

  Based on dynamic programming
◦  interesting for testing purposes, as it guarantees

to find the optimal alignment between sequences

  Local alignment
◦  more useful for sequences of different sizes. The

focus is to find regions of high similarity in the
longer sequence (the trace)

GTGTATACC-AGAG
 ||| || ||
--GTAC-CCAAG--

  Analysis of different scoring systems:
◦  What scores to give to matches, mismatches

(good and bad), gaps?

  Analysis of false positives, false negatives

  Are quasi-optimal alignments useful or not?

  Applications:

◦  Benchmark programs for the analysis

◦  Real-world WS

  Expressing more “powerful” properties:
◦  How to take into account timing constraints

  Ex.: event A should occur within 30u.t after event B

  Considering the traces of different service
interactions in a service composition

BioCore Project

http://robustweb.ic.unicamp.br/

