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Motivation and Goals

e Advances in computing technology enable deployment of
robust, cost-effective embedded devices with increased
processing power

e Support biomedical applications, which require

= real-time processing of a large amount of physiological data

= rapid detection/identification of abnormalities in measured
signals

= notification of medical personal in remote sites

e Create a hardware system for robust, secure, and non-
Invasive health monitoring and diagnosis

= demonstrate a prototype device in detecting conditions such as
epileptic seizure

= Long term goal — develop an adaptive system on a chip
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Challenges

e System architecture
= Small footprint, reconfigurable, low power solution
= Enable rapid adaptation to application specifics
= Support application-specific trust
- Reliability and security in data processing and transmission

e Data processing

= Accuracy of monitoring and diagnosis depends on the
guality of the sensor data and the algorithm used to
process the data

= Adaptability and extendibility to different sensing
elements and data processing algorithms
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Approach

» Use smart bio-sensors for continuous and
autonomous monitoring of human physiological
signals

= ability to collect EEG, oxygen saturation, and
heart rate in real time

= detect abnormalities in the data
= alert the user and a remote logging base station

e Use COTS (Components Off the Shelf) power-efficient
device (e.g., microcontroller) to deploy the
embedded monitoring system
= Provide adaptability to different application

crenarine which invvolvve diffarent cancenre and data



High Accuracy Detection of
Epileptic Seizures




Overview

* Epileptic seizure
= unusual recurrent electrical discharges in neurons, observed in
EEG (electroencephalogram)
= ~50 million suffer from seizure worldwide
= Need prolonged inspection before treatment/surgery, can be
done at home
e Automated seizure detection
= Embedded HW, high accuracy, low area and power
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Automated Seizure Detection Flow

*ADC eSample Entropy *Machine learning based

Final Decision &

\ Data Acquisition Feature Extraction Classification
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Analog Signal

eFiltering
*Noise Reduction threshold

e Digital EEG Database — University of Bonn
= 100 sets of Healthy EEG
= 100 sets of Seizure EEG



Feature Extraction: Sample Entropy

* Measures complexity/randomness in time series

= Richman & Moorman (2000)
e Large value of Sample Entropy

-> More complexity/randomness -> Normal Brain Activity
« Small value of Sample Entropy

-> Less complexity/randomness -> Seizure
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Feature Extraction: Variance

* measure of the variation of the data set from its mean.
= Normal EEG -> smaller spikes -> low variance
= Seizure EEG -> larger spikes -> high variance
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Classification: Neural Network

Data sampled at 173 Hz
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Performance and HW Footprint

« Configurations (feature extraction + classification):
(1) Sample Entropy + ANN
(2) Variance + ANN

(3) Variance + Predetermined Threshold
Detection Performance

\NN Variance + : ANN
Measurement Saimp E(;; Threshold Vaﬂan;;;
(%)
Overall Accuracy 99.73 98.52 99.18
Sensitivity 99.46 99.47 98.60
Specificity 100.00 97.61 99.78

FPGA Footprint

SampEn + ANN

Variance + ANN

Module A Percentage Module g Percentage
Usage Usage
SampEn 36964 76.44 Variance 2490 5.15
ANN 15432 31.91 ANN 18683 38.64
Total 52396 108.35 Total 21173 43.79




Optimization: Reduced Precision

 Initial implementation: 32 bits words
= Format: sign bit + integer bits + fraction/precision bits = word
= Experiment with reduced precision and word-length

Precision and Performance

Precision TotLa;In\g/t(;]rd- Overall Sensitivity | Specificity
(bits) (bits) Accuracy (%) (%) (%)
1 11 47.45 100.00 48.75
2 12 84.02 68.04 100.00
3 13 92.23 86.45 100.00
4 14 96.47 93.49 99.88
5 15 99.08 99.24 98.92
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Optimization: Pipelining

 Introduce registers in intermediate stages
« Smaller signal propagation path = lower power consumption
e Extra memory for intermediate states

M1 M1

input input
weight n A1 A2 weight n A1 A2 Ad
. A3 Ad . A3
e M2 [+ | e M2 oY reg2 reg2 tput
+ outpu
Ut — - . |—|
wel
g M3 weig M3
input > input
weight » X I_W we.f;m - i
input o | input
welght 5] weight <]




Area and Power Consumption

e 78% reduction in resource, 62% reduction in power

Area and Power Usage with Optimizations

Resource i
. R .
Architecture/ Usage Esource L= Power Saving
B sage power
Optimization (ALUTs + D o (MW) (%)
Registers) ecrease (%)
Un-optimized 21472 -- 4.3 --
Reduced precision 6828 68.20 2.85 33.72
Red. prec. + Folding 4902 77.17 1.62 62.33
Red. prec+ Fold+|  g4), 76.61 1.63 62.09
Pipeline
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Findings

« Variance with ANN allows high accuracy (99.18%)
with moderate HW usage (44%).

e Algorithmic and architectural optimizations allow
4.4X reduction of HW usage and 2.7X reduction of
power

 Embedded seizure detection implementation with:
= High accuracy
= Real-time detection
s Simple design
= Power efficient
= Small HW foot-print



Reconfigurable Hardware Design
for Health Monitoring




Trusted ILLIAC Approach
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Evolution of RSE for Hea
Monitoring: Helmet Project

« Small footprint, light-weight,
low power consumption,
real time data monitoring
and diagnostics
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Reconfigurable Hardware Platform
Biomedical Engines

e Main Goal:
= Analysis of a variety of physiological signals
- Configuration of built-in biomedical detection engines
= Anomaly detection
- Correlation of the extracted features from detection engines
e Plan:

= Design and integration of basic signal processing blocks for
extracting different features

= Programming interface for configuration of biomedical detection
engines and correlating their results

e Limiting Factors:
= High computational complexity (Arithmetic/FP calculations)
- Concurrent analysis & correlation/Accurate processing
- Battery life
- Wearable devices



Reconfigurable Architecture for Biomedical Processing
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Reconfigurable Architecture for Biomedical Processing _
Design Flow
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Biomedical Detection Engines
Seizure Detection Example

» Epileptic Seizure Detection
= Transient & unexpected electrical disturbance of brain
= Epilepsy detection:
- Recording Electroencephalogram (EEG)
- Visual scanning for spikes and seizures
e Feature Extraction
= Local Variance:
- Simplest statistics for investigating dynamics of EEG

- Calculated in consecutive non-overlapping windows and
compared with a constant threshold

» Feature Selection/Classification
= Artificial Neural Network (ANN)



Initial Prototype on FPGA
Integration with Leon3 Processor
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summary
Conclusions and Future Work

* Reconfigurable Hardware Platform

= Biomedical detection engines

- Understanding the nature of signals (EEG, ECG, ABP, etc)
- Different features to be extracted
- Correlation of features for detection

- Signal analysis and processing cores
s Reconfigurability
- Reconfigurable Classification
- ANN or SVM
= Dependability Requirements
- Integration of security engines
- High level evaluation of dependability features
- Reliability and Security



Questions




Pervasive Real-Time
Biomedical Monitoring System

Center for Reliable and High Performance Computing
and Center for Health, Aging and Disability
University of Illinois, Urbana-Champaign
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Prototype System Architecture

MSP 430 Node :
... 3

| | i

' . (|
" ? MSP 430 Base Station .L _. J

-



Data Gathering

e EEG signals are sampled at 64 Hz

e Two frequency bands are of primary interest
s Alpha Band — 8 - 12 Hz

- Alpha levels are noted to attenuate under mental
exertion

o Theta Band —4 -7 Hz

- Theta levels typically indicate abnormalities,
e.g., significantly increase for seizure

e Data measured over a time window of 12s Is used
to compute metrics, which enable diagnosis

= Tradeoff between accuracy and the limited
memory space provided by the system
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M

n érlmary Indicator is the alpha/theta ratio (i.e., ratio of power contained in

each frequency band as computed over the measurement window)

« Oxygen Saturation and Heart Rate
= Absolute values for the two are used

Property

Measured

EEG

Oxygen
Saturation

Heart Rate

Normal Abnormal Value

Value

Metric Name

Critical EEG Above 50 % Less than 50 %
Critical Above 70 % Less than 70 %
Oxygen

Critical Heart Above 75 % Less than 75 %

Rate

Criticality Inference
Factor Value

0
1
2

Individual is healthy
Abnormality

Possible Injury /
Seizure

Seek immediate
medical care



Validation of Metrics

* Need to characterize detection coverage of
alpha/theta ratio metric

* Use larger EEG data sample to characterize
= alpha/theta ratio metric
= accuracy of the data processing algorithm

« Use EEG Database at Albert- Ludwigs
University, Freiburg, Germany

= Data recorded during an invasive pre-surgical
epilepsy monitoring with 24 hours of EEG



Validation Resiilts (camnle)

Patient Seizure Baseline Alpha/ Seizure

Information Number Theta Ratio Alpha/Theta Ratio
15 year old 1 0.7804 0.4575
female 2 0.7804 0.54
3 0.7804 0.76
14 year old 1 0.9296 0.2560
male 2 0.9296 0.1828
32 year old 1 1.3943 0.2786
female 2 1.3943 1.0228
3 1.3943 0.9208
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Injuries (Blast Exposure to Battlefield Personnel)

3 . « Small footprint, light-weight,
; | N low power consumption,
real time data monitoring
N\ 4 and diagnostics

» Wireless or satellite data
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Pros and Cons of Proposed System

* Pros

= COTS components used to design low-cost system capable
of robust real-time data gathering, processing, and
communication

= Accurately detecting (certain) seizure patterns
= Non-invasive sensors
e Cons
= Cannot detect all seizure cases
- good for detecting the most common epileptic seizures
= Limited hardware capabilities limit the processing power

= Need for more “precise” data analysis, sophisticated

algorithms, and metrics more sensitive to anomalies in
measured signals



Case for Reconfigurable

Hardware Platform

» Rectify some of the disadvantages of the COTS
Implementation

e Fast and accurate detection using more
sophisticated algorithms

= Complex data processing algorithms can be
directly
embedded in hardware

 Enable/disable features at run-time

 Multi-feature detection

= e.¢., EEG detection , ECG arrhythmia , stroke
detection
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Data preprocessing by computing Variance in the sampled signal
Detection using a Neural Network which is trained to reduce the mean squared error



Application running on Processor

Prototype Architecture

Processor — Leon3 / ARM

Sampled Digital
Data
Sampled Data Result of
Sent to Computation
Module
Variance Neural
Module Network
Spectral
FFT Module Density
Module
Analog Reliable Biomedical
Signals Processing Engine




Prototype FPGA Implementation

e Data sets from a study conducted at the
University of Bonn used to train and test the
Implementation
= 200 sets with 100 seizure sets, 100 normal sets

o 60 sets of normal and seizure used to train the
Neural Network

= 40 sets used for the detection phase.
* 99.97 % detection accuracy

e Very low logic utilization on Altera Stratix |1

~rNNss~ A=A I 2c



Future Work

e Focus on detection algorithms for various
abnormalities, e.g., seizures, arrhythmia, or
stroke

* Explore other non-invasive sensors and
measurements which can be used for multi-facet
detection scheme

e Support for reliable and secure operation In
presence of accidental failures and malicious
tapering with the system

e Design Reliable Biomedical Engine on FPGA
platforms and eventually SoC implementation



BACKUPs
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System Components: Sensors

» Accelerometers
= Detect motion of a person or an object
o Used: Biaxial Accelerometers from MEMSIC

 EEG sensor
= Detect the person’s EEG

= Trauma can be detected by monitoring the delta and theta
frequencies in EEG signal

s Used: EEG Simulator : gives a 60s EEG sample of a seizure patient

e Oxygen saturation and heart beat sensor

= Detect the amount of oxygen in the person’s blood
- Measurement based on light absorption properties of hemoglobin
= Use to compute person’s heart beat

o Used: Sensor from NONIN



System Components: Processing

Elements

e Central processing element is Texas Instruments
MSP430 microcontroller
s Integrated ADC
= Serial communication interface

* Wireless Communication
= TI1 ChipCon CC 2500 transceivers



