Systems for Health Monitoring

Zbigniew Kalbarczyk

(in collaboration with: M. Saleheen, H. Alemzadeh, A. Cheriyan, A. Jarvi, R. Iyer, K. Watkin)

Center for Reliable and High Performance Computing and Center for Health, Aging and Disability University of Illinois, Urbana-Champaign

Motivation and Goals

- Advances in computing technology enable deployment of robust, cost-effective embedded devices with increased processing power
- Support biomedical applications, which require
 - real-time processing of a large amount of physiological data
 - rapid detection/identification of abnormalities in measured signals
 - notification of medical personal in remote sites
- Create a hardware system for robust, secure, and noninvasive health monitoring and diagnosis
 - demonstrate a prototype device in detecting conditions such as epileptic seizure
 - Long term goal develop an adaptive system on a chip

Challenges

System architecture

- Small footprint, reconfigurable, low power solution
 - Enable rapid adaptation to application specifics
- Support application-specific trust
 - Reliability and security in data processing and transmission

Data processing

- Accuracy of monitoring and diagnosis depends on the quality of the sensor data and the algorithm used to process the data
- Adaptability and extendibility to different sensing elements and data processing algorithms

Remote Health Monitoring Application Scenario

Approach

- Use smart bio-sensors for continuous and autonomous monitoring of human physiological signals
 - ability to collect EEG, oxygen saturation, and heart rate in real time
 - detect abnormalities in the data
 - alert the user and a remote logging base station
- Use COTS (Components Off the Shelf) power-efficient device (e.g., microcontroller) to deploy the embedded monitoring system
 - Provide adaptability to different application scenarios which involve different sensors and data

High Accuracy Detection of Epileptic Seizures

Overview

- Epileptic seizure
 - unusual recurrent electrical discharges in neurons, observed in EEG (electroencephalogram)
 - ~50 million suffer from seizure worldwide
 - Need prolonged inspection before treatment/surgery, can be done at home
- Automated seizure detection
 - Embedded HW, high accuracy, low area and power

Automated Seizure Detection Flow

- Digital EEG Database University of Bonn
 - 100 sets of Healthy EEG
 - 100 sets of Seizure EEG

Feature Extraction: Sample Entropy

- Measures complexity/randomness in time series
 - Richman & Moorman (2000)
- Large value of Sample Entropy
 - -> More complexity/randomness -> Normal Brain Activity
- Small value of Sample Entropy
 - -> Less complexity/randomness -> Seizure

Feature Extraction: Variance

- measure of the variation of the data set from its mean.
 - Normal EEG -> smaller spikes -> low variance
 - Seizure EEG -> larger spikes -> high variance

Classification: Neural Network

Out of 200 data sets

- 120 sets for training
- 80 sets for testing

Performance and HW Footprint

• Configurations (feature extraction + classification):

- (1) Sample Entropy + ANN
- (2) Variance + ANN
- (3) Variance + Predetermined Threshold

Detection Performance

Measurement	SampEn + ANN (%)	Variance + Threshold (%)	Variance + ANN (%)
Overall Accuracy	99.73	98.52	99.18
Sensitivity	99.46	99.47	98.60
Specificity	100.00	97.61	99.78

FPGA Footprint

S	ampEn + AN	N	Variance + ANN		
Module	ALUT Usage	Percentage Module		ALUT Usage	Percentage
SampEn	36964	76.44	Variance	2490	5.15
ANN	15432	31.91	ANN	18683	38.64
Total	52396	108.35	Total	21173	43.79

Optimization: Reduced Precision

• Initial implementation: 32 bits words

- Format: sign bit + integer bits + fraction/precision bits = word
- Experiment with reduced precision and word-length

Precision and Performance

Precision (bits)	Total Word- Length (bits)	Overall Accuracy (%)	Sensitivity (%)	Specificity (%)
1	11	47.45	100.00	48.75
2	12	84.02	68.04	100.00
3	13	92.23	86.45	100.00
4	14	96.47	93.49	99.88
5	15	99.08	99.24	98.92

Optimization: Folding

- Re-use component by time-multiplexing redundant section
- Need control circuitry
 For scheduling

Optimization: Pipelining

- Introduce registers in intermediate stages
- Smaller signal propagation path = lower power consumption
- Extra memory for intermediate states

Area and Power Consumption

• 78% reduction in resource, 62% reduction in power

Area and Power	Usage with	Optimizations
----------------	------------	---------------

Architecture/ Optimization	Resource Usage (ALUTs + Registers)	<i>Resource Usage Decrease (%)</i>	Dynamic power (mW)	Power Saving (%)
Un-optimized	21472		4.3	
Reduced precision	6828	68.20	2.85	33.72
Red. prec. + Folding	4902	77.17	1.62	62.33
Red. prec.+ Fold.+ Pipeline	5022	76.61	1.63	62.09

Findings

- Variance with ANN allows high accuracy (99.18%) with moderate HW usage (44%).
- Algorithmic and architectural optimizations allow 4.4X reduction of HW usage and 2.7X reduction of power
- Embedded seizure detection implementation with:
 - High accuracy
 - Real-time detection
 - Simple design
 - Power efficient
 - Small HW foot-print

Reconfigurable Hardware Design for Health Monitoring

Reliability Aware Computing Trusted ILLIAC Approach

Evolution of RSE for Health Monitoring: Helmet Project

Reconfigurable Hardware Platform Biomedical Engines

- Main Goal:
 - Analysis of a variety of physiological signals
 - Configuration of built-in biomedical detection engines
 - Anomaly detection
 - Correlation of the extracted features from detection engines
- Plan:
 - Design and integration of basic signal processing blocks for extracting different features
 - Programming interface for configuration of biomedical detection engines and correlating their results
- Limiting Factors:
 - High computational complexity (Arithmetic/FP calculations)
 - Concurrent analysis & correlation/Accurate processing
 - Battery life
 - Wearable devices

Reconfigurable Architecture for Biomedical Processing

Reconfigurable Architecture for Biomedical Processing

Configuration Program

Biomedical Detection Engines Seizure Detection Example

- Epileptic Seizure Detection
 - Transient & unexpected electrical disturbance of brain
 - Epilepsy detection:
 - Recording Electroencephalogram (EEG)
 - Visual scanning for spikes and seizures
- Feature Extraction
 - Local Variance:
 - Simplest statistics for investigating dynamics of EEG
 - Calculated in consecutive non-overlapping windows and compared with a constant threshold
- Feature Selection/Classification
 - Artificial Neural Network (ANN)

Initial Prototype on FPGA Integration with Leon3 Processor

Summary Conclusions and Future Work

- Reconfigurable Hardware Platform
 - Biomedical detection engines
 - Understanding the nature of signals (EEG, ECG, ABP, etc)
 - Different features to be extracted
 - Correlation of features for detection
 - Signal analysis and processing cores
 - Reconfigurability
 - Reconfigurable Classification
 - ANN or SVM
 - Dependability Requirements
 - Integration of security engines
 - High level evaluation of dependability features
 - Reliability and Security

Questions

Pervasive Real-Time Biomedical Monitoring System

A. Cheriyan, A. Jarvi, Z. Kalbarczyk, R. Iyer, K. Watkin

Center for Reliable and High Performance Computing and Center for Health, Aging and Disability University of Illinois, Urbana-Champaign

Prototype System Architecture

Data Gathering

- EEG signals are sampled at 64 Hz
- Two frequency bands are of primary interest
 - Alpha Band 8 12 Hz
 - Alpha levels are noted to attenuate under mental exertion
 - Theta Band 4 7 Hz
 - Theta levels typically indicate abnormalities, e.g., significantly increase for seizure
- Data measured over a time window of 12s is used to compute metrics, which enable diagnosis
 - Tradeoff between accuracy and the limited memory space provided by the system

MEGISignals

Primary indicator is the *alpha/theta* ratio (i.e., ratio of power contained in each frequency band as computed over the measurement window)

Oxygen Saturation and Heart Rate

Absolute values for the two are used

Property Measured	Property Metric Name Normal Abnormal Value		Criticality Factor Value	Inference	
				0	Individual is healthy
EEG	Critical EEG	Above 50 %	Less than 50 %	1	Abnormality
Oxygen Saturation	Critical Oxygen	Above 70 %	Less than 70 %	2	Possible Injury /
Heart Rate	Critical Heart Rate	Above 75 %	Less than 75 %	3	Seek immediate

Validation of Metrics

- Need to characterize detection coverage of alpha/theta ratio metric
- Use larger EEG data sample to characterize
 - alpha/theta ratio metric
 - accuracy of the data processing algorithm
- Use EEG Database at Albert- Ludwigs University, Freiburg, Germany
 - Data recorded during an invasive pre-surgical epilepsy monitoring with 24 hours of EEG

Validation Results (sample)

Patient Information	Seizure Number	Baseline Alpha/ Theta Ratio	Seizure Alpha/Theta Ratio
15 year old	1	0.7804	0.4575
female	2	0.7804	0.54
	3	0.7804	0.76
14 year old male	1	0.9296	0.2560
	2	0.9296	0.1828
32 year old female	1	1.3943	0.2786
	2	1.3943	1.0228
	3	1.3943	0.9208

Alpha/Theta Ratio = 0.2560

Application: Monitoring Traumatic Brain Injuries (Blast Exposure to Battlefield Personnel)

Pros and Cons of Proposed System

- Pros
 - COTS components used to design low-cost system capable of robust real-time data gathering, processing, and communication
 - Accurately detecting (certain) seizure patterns
 - Non-invasive sensors
- Cons
 - Cannot detect all seizure cases
 - good for detecting the most common epileptic seizures
 - Limited hardware capabilities limit the processing power
 - Need for more "precise" data analysis, sophisticated algorithms, and metrics more sensitive to anomalies in measured signals

Case for Reconfigurable Hardware Platform

- Rectify some of the disadvantages of the COTS implementation
- Fast and accurate detection using more sophisticated algorithms
 - Complex data processing algorithms can be directly embedded in hardware
- Enable/disable features at run-time
- Multi-feature detection
 - e.g., EEG detection , ECG arrhythmia , stroke detection

Prototype System: Principle of Operation

Data preprocessing by computing *Variance* in the sampled signal Detection using a Neural Network which is trained to reduce the mean squared error

Prototype FPGA Implementation

- Data sets from a study conducted at the University of Bonn used to train and test the implementation
 - 200 sets with 100 seizure sets, 100 normal sets
 - 60 sets of normal and seizure used to train the Neural Network
 - 40 sets used for the detection phase.
- 99.97 % detection accuracy
- Very low logic utilization on Altera Stratix II

Future Work

- Focus on detection algorithms for various abnormalities, e.g., seizures, arrhythmia, or stroke
- Explore other non-invasive sensors and measurements which can be used for multi-facet detection scheme
- Support for reliable and secure operation in presence of accidental failures and malicious tapering with the system
- Design Reliable Biomedical Engine on FPGA platforms and eventually SoC implementation

BACKUPs

System Components: Sensors

Accelerometers

- Detect motion of a person or an object
- Used: Biaxial Accelerometers from MEMSIC

EEG sensor

- Detect the person's EEG
- Trauma can be detected by monitoring the *delta* and *theta* frequencies in EEG signal
- Used: EEG Simulator : gives a 60s EEG sample of a seizure patient

Oxygen saturation and heart beat sensor

- Detect the amount of oxygen in the person's blood
 - Measurement based on light absorption properties of hemoglobin
- Use to compute person's heart beat
- Used: Sensor from NONIN

System Components: Processing Elements

- Central processing element is Texas Instruments MSP430 microcontroller
 - Integrated ADC
 - Serial communication interface
- Wireless Communication
 - TI ChipCon CC 2500 transceivers