
Better Embedded
System Software

Philip Koopman

&Electrical Computer
ENGINEERING

2

Empirical Approach To Content
Based on 90+ industry design reviews
• Real companies, products, problems
• Some reviews were to save failing projects
• Other reviews were to check up on otherwise good

projects

Professional book for practicing embedded
system designers
• Dug out the “red flag” issues from the review reports
• Sorted, aggregated, sifted
• 6 areas; 29 topics within those areas
• Each chapter is 8-15 pages about a red flag topic
• This is the stuff designers get wrong in real projects

Also see my blog at:
http://betterembsw.blogspot.com/

3

Software Development Process
(Numbers are chapter numbers: 2-29)

2. No Written Development Plan
• And, often, no defined methodical development process

3. Insufficient paper trail
• Things other than the code itself not written down

4. Creation of useless paper rather than useful paper
• Creation of paper for paper’s sake (although this is unusual)
• Belief that paper trail is a waste of time

4

Requirements & Architecture
5. No written software requirements

• But often, thorough non-software requirements (digital HW, mechanical)

6. Poor requirement quantification
• “Runs fast” or “user friendly”

7. No traceability from requirements to acceptance test
• So you don’t know if the acceptance test actually tests everything that matters

8. No non-functional requirements
• No stated targets for dependability, safety, security

9. High requirements churn
• No change control process or formal change approvals; no freeze date

10. No defined architecture
• Only a hardware-only block diagram

11. Poor modularity
• Often just a big pile of code; multi-page Interrupt Service Routines

5

Design
12. No software design

• Just implementation. Few flowcharts; usually no statecharts
13. No statecharts for state-intensive systems

• Fuzzy understanding of behavior results in deeply nested, buggy
“if” statements

14. No real time scheduling
• Often ad hoc tasking approach

15. No methodical approach to user interface
• Engineers take a shot without considering usability

6

Implementation
16. Heavy use of assembly language

• Instead of writing code that is easy to compile or investing in
good tools

17. Inconsistent coding style
• Don’t use a style sheet or common style approach

18. Optimizing for hardware instead of total system cost
• “Engineers are free” – spend time squeezing into the last 1% of

memory
19. Use of many global variables

• Some learned to program with unscoped languages (e.g., BASIC)
20. No use of concurrency management

• E.g., no use of a mutex when warranted. In general no notion of
time triggered

7

Verification & Validation
21. Poor static checking or compiler warnings

• Warnings not generated or ignored
22. Ineffective peer reviews

• Sometimes informal hall checks, but often nobody else even
looks at code

23. No test plan
• No methodical approach to testing. Often hardware-centric

testing
24. No formal issue tracking

• May not be a central bug log
25. No run time error logs

• Or, sometimes, logs without enough useful information (e.g., no
time stamps)

8

Critical System Properties
26. Dependability

• Usually no dependability plan beyond “software shall never
crash”

27. Security
• Usually little or no security plan even for network-connected

systems
28. Safety

• Often no recognition that a system is somewhat safety critical
(SIL 2 or SIL 3)

29. No or improper use of watchdog timers
• Timers turned off or kicked from a hardware timer

30. Insufficient attention to system reset
• May disrupt running system; may not anticipate multiple

proximate resets

