
A Data Driven Approach to Designing
Adaptive Trustworthy Systems

Ravishankar K. Iyer
(with A. Sharma, K. Pattabiraman, Z.

Kalbarczyk, …
Center for Reliable and High-Performance Computing

Department of Electrical and Computer Engineering and
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

http://www.crhc.uiuc.edu/DEPED

Analysis of Security Incidents at
NCSA: a Large Open Networked
Computing Environment

NCSA Target System

Number of
hosts

5000+ (clusters,
workstations, laptops)

Number of
Active Users:

6000+

Network Class B (/16)

Monitoring
Links

10Gb pipes

Monitoring
Tools

- IDS (4.5GB daily logs)
- Network Flow (2.0G)
- File integrity check
- Central Syslog (1.5G)

OS Types Linux, AIX, Solaris, OS-X,
Windows

Five-Minute Snapshot of In-and-Out
Traffic within NCSA

Incident Data
(124 real Incidents + 26 investigations)

Sample records

Monitors and Alert distribution

Distribution of
Incident Types vs Alert Types

Major Observations: All Incidents
  The majority of incidents (55%) due to attacks on

authentication mechanisms with varying levels of
sophistication

  password guessing (bruteforce SSH),

  exploiting a vulnerability, e.g., VNC null session,

  installing trojaned versions of SSH and SSHD to sniff passwords and target
public-private key pairs (credential stealing)

  The same alert can be triggered by different attacks.
  the basic steps followed by attacks (of same category) in penetrating the

system are often similar regardless of the vulnerability exploited

  Anomaly-based detectors are seven times more likely to
capture an incident than are signature-based detectors

  signatures are specialized to detect the presence (or download) of a known
malicious binary but can be easily subverted

  the signature-based detectors have fewer false positives compared to the
anomaly-based detectors.

Analysis of an Example Incident
(Credentials Stealing Category: Total 32 incidents)

  An IDS alert shows suspicious download on a
production system (victim: xx.yy.ww.zz) using http protocol
from remote host aa.bb.cc.dd.

  The file is suspect because
  This particular system is not expected to download any code apart from

patches and system updates, and then only from authorized sources
  The downloaded file is a C language source code

  The server the source was downloaded from not a formal software distribution
repository.

  The alert does not reveal what caused the potentially
illegal download request

May 16 03:32:36 %187538 start xx.yy.ww.zz:44619 > aa.bb.cc.dd:80
May 16 03:32:36 %187538 GET /.0/ptrat.c (200 "OK" [2286] server5.bad-
host.com)

Correlations with Other Logs

  Network flows reveal further connections with other
hosts in close time proximity to the occurrence of the
download:

  SSH connection from IP address 195.aa.bb.cc
  Multiple FTP connections to ee.ff.gg.hh, pp.qq.rr.ss.

  SSH connection record does not reveal
  Whether authentication was successful
  What credentials were used to authenticate the user

09-05-16 03:32:27 v tcp 195.aa.bb.cc.35213 -> xx.yy.ww.zz.22 80 96 8698 14159 FIN
09-05-16 03:33:36 v tcp xx.yy.ww.zz.44619 -> aa.bb.cc.dd.http 8 6 698 4159 FIN
09-05-16 03:34:37 v tcp xx.yy.ww.zz.53205 -> ee.ff.gg.hh.ftp 1699 2527 108920 359566 FIN
09-05-16 03:35:39 v tcp xx.yy.ww.zz.39837 -> pp.qq.rr.ss.ftp 236 364 15247 546947 FIN

Correlation with syslog Alerts
  syslog confirms a user login from 195.aa.bb.cc, which is

unusual, based on the know user profile and behavior
patterns

  Four data points established from the anlysis
  A suspicious source code was downloaded,
  The user login occurred at nearly the same time as the

download,
  First time login from IP address 195.aa.bb.cc,
  Additional communication on other ports (FTP)

May 16 03:32:27 host sshd[7419]: Accepted password for user from
195.aa.bb.cc port 35794 ssh2

Additional (Manual) Analysis
  Search of all files owned or created by this user found a

footprint left behind by a credential-stealing exploit.

  The additional analysis showed
  The library file libno_ex.so.1.0 is known to be created when

an exploit code for a known vulnerability (cve-2009-1185)
is successfully executed

  File is owned by the user whose account was stolen and
used to login to the system

  The attacker obtained root privileges in the system and
replaced the SSHD daemon with a trojaned version

  Harvesting more user credentials

-rwxrwxr-x 1 user user 3945 May 16 03:37 /tmp/libno_ex.so.1.0

Observations: Incident Analysis

  No single available tool can perform this kind of
analysis

  Need to correlate:
  data from different monitors
  system logs
  human expertise

  Need to develop techniques to pre-empt an
attacker actions

  potentially let the attacker to progress under probation (or tight
scrutiny) until the real intentions are clear

Credentials Stealing Attacks

  Initial investigation of security incidents indicated
that nearly 26% (32/124) of the incidents analyzed
involved credentials stealing

  31 out of 32 incidents attackers came into the
system with a valid credential of an NCSA user
account

  Attackers rely on their access to an external repository of
valid credentials to harvest more credentials

  Availability of valid credentials makes boundary
protections (e.g., reliance only on a firewall) insufficient
for this type of attacks.

  More scrutiny in monitoring user actions is required

Detection of Credentials Stealing
Incidents

About 28% (9/32) of
credentials stealing
incidents missed by the
monitors, i.e., none

ofiincident was discovered
by external

 notification

IDS = 7 Incidents
Flows=5 Incidents
Syslogs = 11 incidents

Characteristics of Credentials
Stealing Incidents

  Attackers obtained access to the host

  Using a stolen password (78%)

  A public key (16%)

  Combination of multiple authentication means

  (password + gssapi-with-mic or password + publickey) (6%).

  31% of incidents miscreants obtain root on the
compromised host and install a rootkit and/or sniffer by
using a local root escalation exploit

  In 9% of incidents, the attacker downloaded additional tools
to scan for a vulnerability in the NFS file system.

  Attackers came in with valid credentials (over 90%)! Insider
like attacks

Application-aware Checking
TRUSTED ILLIAC Project

Application-aware Detection

Device/Circuit Level

Architectural Level

Operating System Level

Application Level
Application
Properties

Runtime Checks (Detectors)

  App-aware: Use application properties to derive
error and attack detectors (runtime checks)

  Achieve high-detection coverage with low overheads
  Detect only attacks and errors that matter to the application
  Ensure that attack and error is detected before propagation

Unified Design Framework

Identify critical variables and their location
within a program

Apply heuristics, e.g., fanouts, to
identify critical variables.

Use application semantics to identify
security critical variables, e.g., a password

Static program analysis: Extract
backward slices of critical variables

Generate checks to verify that value is
produced by legitimate instructions.

Reliability Security

Runtime checking to ensure integrity of
critical variables according to the slice

Critical Variable
Recomputation

Information-flow
signatures (IFS)

Generate correctness checks for data
values in critical program locations

•  Selectively enforce source-level properties of writes
to critical data at runtime

•  Techniques:
–  IFS (information flow signatures) – protects critical data integrity
–  CVR (critical value re-computation) – verifies correctness of critical

data computation

•  Attack Models
–  Memory corruption attacks
–  Control and/or data flow change
–  Insider attacks (malicious libraries, 3rd party plugins)
–  Binary modifications – illegal downloads

•  Fault Models
–  Soft errors
–  Memory corruption errors
–  Race conditions and/or atomicity violations

Techniques and Attack/Error Models

Hybrid Implementation (hw + sw)

  Runtime enforcement using combination
of hardware and software

  Single hardware framework host
modules providing reliability and
security protection

  FPGA-based prototype evaluated on
embedded programs and network
applications (e.g., OpenSSH)

  Performance overhead = 1% to 30 %
(depending on the application)

  Area overhead = 4% to 20 %
(relative to Leon3 processor)

Results (5 critical var per func)

Average Perf. Overhead
 Checking = 25%
 Modification = 8%
 Total = 33 %

Average Coverage
 Before Prop = 64 %
 Before Crash = 13%
 Total Detected = 77 %

 H/W Implementation - RSE

PC Operands Halt SignalResult Data

Main Processor Pipeline
DecodeExecute Memory CommitFetch

RSE – Reliability and Security Engine

Pointer
Taintedness

Security Checks Reliability Checks
Information-flow Signature

Pointer Taintedness Checking

Signature
Accumulator

Assertion Checking

Critical Variable
Signatures

Critical Variable
Re-Computation

Path
Tracking

Hang
Detection
ModuleTaintedness

Tracking
Taintedness

Detection

 Sequence
Checking
Module

Validation Using Symbolic
Execution and Model-
Checking Framework

Formal Framework for Software and
Detector Validation

Formal
Verification Tool/

Technique

Assembly Language
Program

Enumeration of all
errors/attacks that

escape detection

Input: Application code with
embedded error/attack detectors

Output: Understanding of the
limitations of error/attack detectors

SymPLFIED SymPLAI
D

Symbolic Execution and
Model Checking

SymPLFIED: (Symbolic Program Level
Fault-Injection and Error Detection Framework)

  Goal: evaluate the effects of runtime errors on programs
with detectors

  Analyze programs directly in assembly language

  Generic representation of error detectors
  Allows arbitrary error detectors to be specified in application

  Fault Model: Hardware (memory and processor) and
(some) software errors

  Comprehensive enumeration of undetected errors
that lead to program failure

SymPLFIED: Case Study

  Tcas: Application Characteristics
  FAA mandated Aircraft collision avoidance system
  Rigorously verified protocol and implementation
  About 150 lines of C code = 1000 lines of assembly

Inputs: Positional parameters of
other aircraft (and self)

Outputs:
 0 – Unresolved
 1 – Ascend
 2 - Descend

1

2

Summary

  Derivation error and attack detectors
  Using application-properties discovered through
static and dynamic analysis

  Detectors derived from backward slice of critical
variables in the application

  Derived detectors can be implemented in
programmable hardware and software

  Future Directions
  Controlled Diversity
  Formal Techniques
  Hardware Compilation

