e (S
O/ IEIPAWG 1024 "Meeting =
Lshigaki dslandsJapan==-January z1=c5, 2010

WorkshoprontDependable Operating” Systenis

et

Wrap-Up:
A Meeting among
Open Systems & Operating Systems

Jean Arlat

[jJean.arlat@laas.fr]

LAAS-CNRS

Université
de Toulouse






a Day Keeps the Docteur Away...

You need to restart your computer. Hold down the Power
button for several seconds or press the Restart button.

Veuillez redémarrer votre ordinateur. Maintenez la touche
de démarrage enfoncée pendant plusieurs secondes ou bien
appuyez sur le bouton de réinitialisation.

Sie miussen lhren Computer neu starten. Halten Sie dazu
die Einschalttaste einige Sekunden gedruckt oder dricken
Sie die Neustart=Taste.

AVE 2= EBEDT SVENHDEYT, TR %
* Yet Another BB LRITEID. VEYRRYUEZBLTLEZL,

Panic Screen!

NB. Just meant to add to Xavier's Introduction to the Workshop ;-) 3



Dependable Open Systems: DEOS project

m Dependability wrt to incompleteness, changes/uncertainties:
Open Systems <—> Resilience (EU FP6 ReSIST NoE: www.resist-noe.org)

m Accountability: showing evidence of “best effort” wrt to risk management
—> “process-orientation” / “product-orientation”?

m New standards
¢ Adaptability, usability, manageability, not so well addressed..

¢ System profiling under incompleteness and uncertainty
Assurance Case (AC): stake holders analysis, consensus building, decision making

—> Are AC “open” enough? — “Assurance” vs. “Insurance”?

m Evidence-based Computing
¢ Architectural framework for Open Systems dependability
¢ Based on monitoring (insertion of probes) — D-Box # flight recorder
—> Worries about any “probe effect”?

m Tooling Framework
¢ Model checking (ABSL) and Type Checking (insertion of dynamic checks)
¢ Qualitative metrics and D-cases — first,Operatings Systems, then Open Systems,




Hypervisors and Virtualization

m Virtual CPUs to support execution of replicated entities on
single machine

m Seld pkernel: the core element (TCB) for high confidence
requirements

m SPUMONE (Composition kernel): to accomodate HW layer
evolution (multicore): application/OS reuse and core
reconfiguration management
Guest OS Kernels: user/kernel modes?

—> Generic platform: cyber-physical, cloud computing,
ambient-inteligence ?



Architecting Operating Systems

m ArSec: COTS OSs, mature, powerful, flexible, but vulnerable

—> Call for data flow control, diversification and advances In
virtualization to the rescue!

Still needs some “Trusted Computing Base* to rely upon ..
(see next slide)

m P-Bus: Extension of OS services wrt Dependability features
Specification of properties (implemented into source code)
—> on-line model/type checkmg — limited overhead,
the device driver issue, again.. = “Wrapping” technique

B GENESYS: An architecture supporting “Distribution” of OS

services at HW level over MPSOCs # monolithic OS
—> petter isolation and management, including error handling




Proving/Verifying Operating Systems

m Sel4 pKernel — Formally-verified OS Kernel

¢ Confinement (Safety properties?) -> Access Control
—> Spec — Design* — C-code (restricted) * Haskell prototype

¢ Assumptions: Compiler/Linker, Assembly code, HW, Boot code, ..
¢ Cost-effective, Drivers.. see next slide, Multicore (GENESYS?)

m RT OS verification — OSEK/VDX
[suitable for AUTOSAR (AUTomotive Open System Architecture) framework]

¢ Focus on Scheduler
¢ Promela description and SPIN checking
¢ Powerful computer cluster needed, State explosion

¢ Application to automotive industry:
complementarity of formal methods and testing




The Drivers

m Most part of Kernels, Most failures, Most evolutions, ..

m Impact evidenced by several studies:

fallure data analyses and fault injection experiments
(see subsequent slide)

m \What can be done about It?

*

\ 4
¢

Restrict driver’s operation to user mode?
SW Language-based approach: Coccinelle —> Automatize changes

Better specify the interface between kernel and drivers

—> Towards a “DPI” & APl for drivers
CDI (common driver interface), DDI (device driver interface),
DKI (driver kernel interface), ..

“Shadow” driver (Swift et al. OSDI 2004)

See also the “wrapping” concept: (Rodriguez et al. EDCC-2002)
& on-line checking by P-Bus



Assessment, Metrics
COTS 0OSs...

Fault injection: a pragmatic approach to get useful insights

Objective characterization of behaviors in presence of faults:
Impact of hardware platform, discriminate OSs, drivers,

Fault injection

¢ What? parameter, bit-flip, .. ®# fault vs. error injection

¢ Where? data representation ® code pre-analysis (Chalmers)
¢ When? activity ® stress-based fault injection (UIUC)

-> “Fault collapsing” techniques in Testing (equivalence classes)

Metrics -- qualitative, quantitative D-Case: Evidence
divide, conquer (combine?), visualize

—> e \What, Where, When to Observe?
Kernel reaction/status + Workload behavior?

—> e FP5 EU Project DBench (www.laas.fr/DBench)
e WG 10.4 SI1G DeB (www.dependability.org/wg10.4/S1GDeB)



Are
OPEN SYSTEMS

part of
OPERATING SYSTEMS?



Are
OPEN SYSTEMS

part of
OPERATING SYSTEMS?

(Yes .. To a large extent:

OPErathg SYSTEI\/IS

@




