
Wrap-Up:

A Meeting among

Open Systems & Operating Systems

Jean Arlat
[jean.arlat@laas.fr]

2

An a Day Keeps the Docteur Away…

3

An a Day Keeps the Docteur Away…

 YAPS!*

* Yet Another
 Panic Screen!

NB. Just meant to add to Xavier’s Introduction to the Workshop ;-)

4

Dependable Open Systems: DEOS project

Dependability wrt to incompleteness, changes/uncertainties:
Open Systems <—> Resilience (EU FP6 ReSIST NoE: www.resist-noe.org)

Accountability: showing evidence of “best effort” wrt to risk management

 —> “process-orientation” / ”product-orientation”?

New standards
Adaptability, usability, manageability, not so well addressed…
System profiling under incompleteness and uncertainty
Assurance Case (AC): stake holders analysis, consensus building, decision making

—> Are AC “open” enough? — “Assurance” vs. “Insurance”?

Evidence-based Computing
Architectural framework for Open Systems dependability
Based on monitoring (insertion of probes) — D-Box flight recorder

—> Worries about any “probe effect”?

Tooling Framework
Model checking (ABSL) and Type Checking (insertion of dynamic checks)
Qualitative metrics and D-cases — first,Operatings Systems, then Open Systems

5

Hypervisors and Virtualization

Virtual CPUs to support execution of replicated entities on
single machine

SeL4 kernel: the core element (TCB) for high confidence
requirements

SPUMONE (Composition kernel): to accomodate HW layer
evolution (multicore): application/OS reuse and core
reconfiguration management
Guest OS Kernels: user/kernel modes?

—> Generic platform: cyber-physical, cloud computing,
ambient-inteligence ?

6

Architecting Operating Systems

ArSec: COTS OSs, mature, powerful, flexible, but vulnerable
 —> Call for data flow control, diversification and advances in

virtualization to the rescue!
 Still needs some “Trusted Computing Base“ to rely upon …
(see next slide)

P-Bus: Extension of OS services wrt Dependability features
Specification of properties (implemented into source code)
—> on-line model/type checking — limited overhead,
the device driver issue, again… “Wrapping” technique

GENESYS: An architecture supporting “Distribution” of OS
services at HW level over MPSOCs monolithic OS
—> better isolation and management, including error handling

7

Proving/Verifying Operating Systems

SeL4 Kernel — Formally-verified OS Kernel
Confinement (Safety properties?) -> Access Control
—> Spec — Design* — C-code (restricted) * Haskell prototype
Assumptions: Compiler/Linker, Assembly code, HW, Boot code, …
Cost-effective, Drivers… see next slide, Multicore (GENESYS?)

RT OS verification — OSEK/VDX
[suitable for AUTOSAR (AUTomotive Open System Architecture) framework]

Focus on Scheduler
Promela description and SPIN checking
Powerful computer cluster needed, State explosion
Application to automotive industry:
complementarity of formal methods and testing

8

The Drivers

Most part of Kernels, Most failures, Most evolutions, …

Impact evidenced by several studies:
failure data analyses and fault injection experiments
(see subsequent slide)

What can be done about it?
Restrict driver’s operation to user mode?

SW Language-based approach: Coccinelle —> Automatize changes

Better specify the interface between kernel and drivers
 —> Towards a “DPI” API for drivers
CDI (common driver interface), DDI (device driver interface),
DKI (driver kernel interface), …

“Shadow” driver (Swift et al. OSDI 2004)

See also the “wrapping” concept: (Rodríguez et al. EDCC-2002)
 on-line checking by P-Bus

9

Assessment, Metrics
COTS OSs…

Fault injection: a pragmatic approach to get useful insights

Objective characterization of behaviors in presence of faults:
impact of hardware platform, discriminate OSs, drivers,

Fault injection
What? parameter, bit-flip, … fault vs. error injection
Where? data representation code pre-analysis (Chalmers)
When? activity stress-based fault injection (UIUC)

 -> “Fault collapsing” techniques in Testing (equivalence classes)

Metrics -- qualitative, quantitative D-Case: Evidence
divide, conquer (combine?), visualize

—> • What, Where, When to Observe?
 Kernel reaction/status + Workload behavior?

—> • FP5 EU Project DBench (www.laas.fr/DBench)

 • WG 10.4 SIG DeB (www.dependability.org/wg10.4/SIGDeB)

10

Are
OPEN SYSTEMS

part of
OPERATING SYSTEMS?

11

Are
OPEN SYSTEMS

part of
OPERATING SYSTEMS?

Thanks!

Yes, … to a large extent:

OPEratiNg SYSTEMS

