Dependability Case and Metrics
for Open Systems Lifecycle

@IFIP WG 10.4

Jin Nakazawa, Keio University, Japan
Yutaka Matsuno, National Institute of Advanced Industrial Science
and Technology (AIST)

+DEQOS core team

US’s Vision for High Speed Rail

www.whitehouse.gov

Which one is the
most dependable?

Shinkasen

Goal

Metrics o represent how dependable a system is.

100 100
Assurance case
75 A to argue why the system is dependable. 75
50 50
25 25
0 0

e = B
cell phones ATM system digital appliances (TVs, etc)
car navigation system cell phones

Target(metrics): Operating systems as the core of application systems
Target(AC): Open systems

Outline

® Dependability Metrics

® Initial research outcome aiming at evaluating the
amount of dependability of systems.

® by Jin Nakazawa, Keio Univ.
® Dependability Case (D-Case)

® A scheme to express dependability of operating
systems adopting assurance case.

® by Yutaka Matsuno, AIST

Dependability Metrics for Open
Systems Lifecycle

Jin Nakazawa, Keio University, JAPAN

Roles of Operating
Systems for Dependability

® Dependable applications must be on a

dependable OS.

Dependable OS provides

Digital applianaces o
ATM operation

Development/testing tools
® Source code verification/validation,

Railroad operation € cod .
Fault injection, Benchmarking

® Runtime/maintenance technologies

® Fast reboot, resource reservation,

logging, remote updating, etc.

- Dependability Support

Need for Dependability

100
75
50
25 '
0
@. T

.

—_—

Metrics

® Dependable applications must be on a
dependable OS.

100

72 '® Dependable OS provides

50 ® Development/testing tools

25 ® Source code verification/validation,
0 Fault injection, Benchmarking

® Runtime/maintenance technologies

® Fast reboot, resource reservation,
logging, remote updating, etc.

- Dependability Support

Dependability Metrics
Goals

® Quantitative scale to compare dependability of different systems.

® Represents how much the developers can account for in terms of the
dependability requirement to their systems.

® Dependability visualization to intuitive understandings of dependability.
® Used as tools for stakeholders to communicate with on dependability.
® Addressing different phases in an open system’s life cycle.

® Experimental evaluation of a system describes the system’s dependability
against currently supposed obstructions.

® Need to evaluate how the developers cope with dependability in the range of
different phases to infer the system’s dependability against unsupposed
obstructions (open systems support).

Dependability Obstructions

“DEOS Project White Paper”

————— —— Vo o —

b mme pe et ————
1 ———

T T M‘ . ‘-.‘-.m. — s‘-“-‘m_ . - l;....--o--.- b“- 'l"“"”“ ' ----- .h ''' . -5 - O — — -&I
(e bt fmt—oe Beew - " R B e : Ve e

S S e ey m——— et fege -
| G ——

— E——m——y e —_ v Seo s — -~ — —— —z——aaay - gz —— ——
! — .o -t P # s L v ¢ o e e e m—— !
LA, N T WO ww -) cwor e @ Meen vt s . b @v T M e e mem e v
[@ Sy - S - e bt ® £ o @ — e poo & St bt o Mss e o
B s St S — Vil @ . e Aele s ey oy
- ey . g P be - W - e et b - g

People from IBM Japan, Sony, Panasonic, Yokogawa, Fuji Xerox listed
potential issues that obstruct the systems’ dependability in different
phases (specification, design, testing, distribution, operation, maintenance),
and in different categories (environment, hardware, human error, security
risks/attacks).

—If a system provides dependability support to all the (phase, category)
combinations, it is dependable.

. e - e e— — e -— e o o cmme—g — b < -
\ A E e Sy . | - v rev s~ @t ce e W me e -
P——-— -
D —— Ve S emat w8 Pt o J-o...a.-.-n b et b S - —— - & o snen
—

Table | Dependability Obstructions

Dependability Obstructions

“DEOS Project White Paper”

| A ety ——— ——— ! Vo —
Y
Tee & Se s & B St e s e tees S al— SRR TSRS IS S s LT xd
e e e - — has & .~ . - — “ emtns o e @ e -
————— e - -
l—— g -t - ’
——— 2
l
- —.——-“=~= -:-.-.—J‘ns—. * e - - e w o e
:... - - » o e b~ w 0 .-"m
o e~ v - -) cewre @ Aeen s o v w S
S mmS & - owme o pos © S e @ »‘"—n
‘,.‘-—-‘-.‘- Sty e w \-.—' .
-y - — . A - db.—
——— - ", o - A e - —
i
C———— - =1 -—— — - - —— - po—
— — Ll . - e - we@r o= -
rewe o =1
. - - - - - — S ——
‘ - - beeas
-
——y e e . -—— “a,
el — — . —— - —— -—- e . —
- —— - ————
) — - - -——— - P = - —— — - - e~ - L ———
jor -y — e - pr- v @ Gyt .. e —— ey
'n — — - -
N — -~ w— -——- — . -
e Smmen Ba s secss wi See

M= M [™

™
ol i~ | ma i i el |

Table | Depencability Obstructions

Approach

(1) Divide

Evaluate the amount of
dependability supports
included in the target
OS. Evaluation is
qualitative, and
conducted for each
support.

M

l?;Ll]
< €

current

(2) Conquer

Quantify the amount
of the dependability
supports based on the
amount of
dependability
requirements.

23

0.186 (18.6%)

(3) Visualize

Visualize the
qualitative/quantitative
evaluation from a range
of different aspects.
Used for comparison of
different systems.

a]

Qualitative Evaluation

(1) Target it 8
Elemental Technologies and Tools Entire Operating System
® AnOS includes a range of different ® The results of elemental technologies
technologies and tools to support and tools are merged to represent the
dependability. dependability of the entire OS.
® DEOS includes 20+ supports. ® They are complementary; some are

valuable at development time, and

EaCh SuppOI"t iS evaluated W|th our some others are at run time.

scheme ‘ ‘

Qualitative Evaluation
(2) Labeling

® We use the following “qualitative measures” to
evaluate dependability support in an OS.

~
~

)

0=

RO
RE

® Labeling dependability support with these words.

Phase Component Cause Property
Specification [CPU Environment ™ Availability
Design RAM Hardware Reliability
Implementation File system ™ Attack Safety
Test Communication ™ Mistake Integrity

™ Operation Input/output Maintainability
Maintenance Power supply

Disposal

@)
[

ﬂﬂ

Qualitative Evaluation
(3) Example &

® Advanced Real-time in DEOS

® http://sourceforge.net/projects/art-linux/

Phase Component Cause Property
™ Specification ™ cpu Environment Availability
™ Design RAM Hardware ™ Reliability
™ Implementation File system Attack Safety
™ Test Communication [¥ Mistake Integrity
- Operation Input/output Maintainability
™ Maintenance Power supply
- Disposal

*The developer’s self-assessment

Qualitative Evaluation

m) @)
2 -

(4) Example L=

® Source code model checker in DEOS

ﬂﬂ

® http://www.computer.org/portal/web/csdl/doi/10.1109/

STFSSD.2009.35
Phase Component Cause Property
™ Specification ™ cpu Environment Availability
™ Design ¥ RAM Hardware ™ Reliability
™ Implementation ™ File system ™ Attack ™ Safety
Test ™ Communication ™ Mistake Integrity
Operation i Input/output Maintainability
Maintenance ™ Power supply
Disposal

*The developer’s self-assessment

Evidence of ™

. A tic (and its eVidences - li.'has.e MComponent .Cause Property
should be linked to clarify the e @, | e Vi
check actually satisfies the —
property. - -

® Result of benchmarking, prrfes
fault injection, etc. —

® We use assurance cases for - _—
this purpose. c e B

® To be presented next.

B PP ey
—,
==

m @
dod || =28
Od™

186 (18.6%)

Quantification (conquer)

WM o M

— o o System Developers: Represent the dependability required in a system.

L mwe L comeen | _awe | e | N.:amount of requirements

CPU Environment Availability
W Design W RAM Hardware Wi Reliability
W Implementation W File system Wi Attack Wi Safety
Test W Communication ™ Mistake Integrity — x x x
Operation Input/output Maintainability —
) i
Maintenance T, Power supply r
Disposal 14}

=72
WM o™

— o o OS Developers: Represent the dependability that an OS can satisfy.

o specosen M con e o B Property N S .amount Of SuU P PO rts

nnnnnnnnn t Availability
W Design » RAM Hardware Wi Reliability
W Implementation File system Wi Attack Wi Safety
~ Test Communication ~ Mistake ~ Integrity —
Operation Input/output Maintainability N — 3 x 2 x I x 2 CheC|(S
Maintenance Power supply S
Disposal

=12
Dependability Score: Coverage of dependability support of an OS.

75
50

Used for matchin
s DS=N,/N. ;

between OS and apps

@)

pJJ

@)

pﬂl

Visualization

® Visualize ticks and scores for intuitive understandings of

balance

What properties are covered by an OS,
How each dependability support contributes to,
How the dependability support in an OS is balanced,

What evidences the ticks,

Etc..
= . - . . .
. »
). 14 Besne » - » v =
\ R . SENNENEEE N GNEE NEEE N 2NN 8 AN . W=
4.1 “ EEENEEEEEEEEE [. BEE
. EN__EEEE] EmEERE = Em .
Lo EEE 5 EENEEENEEES NN EN m EE als s
o EEE_ EN 2§ ESEEEEEEEEEE EE BN 2NN NN N
= mm 1] 5 EE mE T
mEE H NEEEE N EEE B

contribution coverage evidence

Limitation

® Ticks are still abstract.

® E.g, a security mechanism is tolerant of DoS
attacks only.

® Such a detailed argument is done with assurance
cases.

® Overhead of dependability support mechanism in an
OS cannot be described with checks.

® Represented in assurance cases with benchmark
results (evidences).

Summary

® Qualitative evaluation categories are proposed.

® Its target is operating systems (not generic open systems yet).

® Initial ideas for quantification and visualization are addressed.

® Used for comparison of different operating systems, and matching the
OS’s against applications’ dependability requirements.

® Future work

® Extend the metrics to cope with open systems more systematic way.

—> will be done based on D-Case description.

® Further research on quantification and visualization

