
Dependability Case and Metrics
for Open Systems Lifecycle!

@IFIP WG 10.4!

Jin Nakazawa, Keio University, Japan!
Yutaka Matsuno, National Institute of Advanced Industrial Science

and Technology (AIST)!

+DEOS core team!

US’s Vision for High Speed Rail
www.whitehouse.gov

sell

Which one is the
most dependable?!

(not just safe)

TGV ICE Shinkansen

Goal

Outline!
•  Dependability Metrics!

•  Initial research outcome aiming at evaluating the
amount of dependability of systems.!

•  by Jin Nakazawa, Keio Univ.!

•  Dependability Case (D-Case)!

•  A scheme to express dependability of operating
systems adopting assurance case.!

•  by Yutaka Matsuno, AIST!

Dependability Metrics for Open
Systems Lifecycle!

Jin Nakazawa, Keio University, JAPAN

Roles of Operating
Systems for Dependability

Hardware
Operating Systems

•  Dependable applications must be on a
dependable OS.!

•  Dependable OS provides!

•  Development/testing tools!

•  Source code verification/validation,
Fault injection, Benchmarking!

•  Runtime/maintenance technologies!

•  Fast reboot, resource reservation,
logging, remote updating, etc.!

!Dependability Support!

Applications
Digital applianaces!

ATM operation!
Railroad operation!

Need for Dependability
Metrics

•  Dependable applications must be on a
dependable OS.!

•  Dependable OS provides!

•  Development/testing tools!

•  Source code verification/validation,
Fault injection, Benchmarking!

•  Runtime/maintenance technologies!

•  Fast reboot, resource reservation,
logging, remote updating, etc.!

!Dependability Support!

Dependability Metrics"
Goals

•  Quantitative scale to compare dependability of different systems.!

•  Represents how much the developers can account for in terms of the
dependability requirement to their systems.!

•  Dependability visualization to intuitive understandings of dependability.!

•  Used as tools for stakeholders to communicate with on dependability.!

•  Addressing different phases in an open system’s life cycle.!

•  Experimental evaluation of a system describes the system’s dependability
against currently supposed obstructions.!

•  Need to evaluate how the developers cope with dependability in the range of
different phases to infer the system’s dependability against unsupposed
obstructions (open systems support).!

Dependability Obstructions
“DEOS Project White Paper”

People from IBM Japan, Sony, Panasonic, Yokogawa, Fuji Xerox listed
potential issues that obstruct the systems’ dependability in different
phases (specification, design, testing, distribution, operation, maintenance),
and in different categories (environment, hardware, human error, security
risks/attacks).!

!If a system provides dependability support to all the (phase, category)
combinations, it is dependable.

Dependability Obstructions
“DEOS Project White Paper”

Approach
(2) Conquer

Quantify the amount
of the dependability
supports based on the
amount of
dependability
requirements.

(3) Visualize
Visualize the
qualitative/quantitative
evaluation from a range
of different aspects.
Used for comparison of
different systems.

(1) Divide
Evaluate the amount of
dependability supports
included in the target
OS. Evaluation is
qualitative, and
conducted for each
support.

current

Qualitative Evaluation"
(1) Target

Elemental Technologies and Tools
•  An OS includes a range of different

technologies and tools to support
dependability.!

•  DEOS includes 20+ supports.!

•  Each support is evaluated with our
scheme.!

Entire Operating System
•  The results of elemental technologies

and tools are merged to represent the
dependability of the entire OS.!

•  They are complementary; some are
valuable at development time, and
some others are at run time.!

(2) (3) (1)

Qualitative Evaluation"
(2) Labeling

•  We use the following “qualitative measures” to
evaluate dependability support in an OS.!

•  Labeling dependability support with these words.

(2) (3) (1)

Phase!
 Specification!
 Design!
 Implementation!
 Test!
 Operation!
 Maintenance!
 Disposal!

Component!
 CPU!
 RAM!
 File system!
 Communication!
 Input/output!
 Power supply

Cause!
 Environment!
 Hardware!
 Attack!
 Mistake

Property!
 Availability!
 Reliability!
 Safety!
 Integrity!
 Maintainability

Qualitative Evaluation"
(3) Example

•  Advanced Real-time in DEOS!

•  http://sourceforge.net/projects/art-linux/

(2) (3) (1)

Phase!
 Specification!
 Design!
 Implementation!
 Test!
 Operation!
 Maintenance!
 Disposal!

Component!
 CPU!
 RAM!
 File system!
 Communication!
 Input/output!
 Power supply

Cause!
 Environment!
 Hardware!
 Attack!
 Mistake

Property!
 Availability!
 Reliability!
 Safety!
 Integrity!
 Maintainability

* The developer’s self-assessment

Qualitative Evaluation"
(4) Example

•  Source code model checker in DEOS!

•  http://www.computer.org/portal/web/csdl/doi/10.1109/
STFSSD.2009.35

(2) (3) (1)

Phase!
 Specification!
 Design!
 Implementation!
 Test!
 Operation!
 Maintenance!
 Disposal!

Component!
 CPU!
 RAM!
 File system!
 Communication!
 Input/output!
 Power supply

Cause!
 Environment!
 Hardware!
 Attack!
 Mistake

Property!
 Availability!
 Reliability!
 Safety!
 Integrity!
 Maintainability

* The developer’s self-assessment

Evidence of a
•  A tick and its evidences

should be linked to clarify the
check actually satisfies the
property.!

•  Result of benchmarking,
fault injection, etc.!

• We use assurance cases for
this purpose. !

•  To be presented next.

(2) (3) (1)

Quantification (conquer)
System Developers: Represent the dependability required in a system.!

OS Developers: Represent the dependability that an OS can satisfy.!

Nr : amount of requirements Phase!
 Specification!
 Design!
 Implementation!
 Test!
 Operation!
 Maintenance!
 Disposal!

Component!
 CPU!
 RAM!
 File system!
 Communication!
 Input/output!
 Power supply

Cause!
 Environment!
 Hardware!
 Attack!
 Mistake

Property!
 Availability!
 Reliability!
 Safety!
 Integrity!
 Maintainability Nr = 3 # 6 # 2 # 2 checks!

 = 72

Ns : amount of supports Phase!
 Specification!
 Design!
 Implementation!
 Test!
 Operation!
 Maintenance!
 Disposal!

Component!
 CPU!
 RAM!
 File system!
 Communication!
 Input/output!
 Power supply

Cause!
 Environment!
 Hardware!
 Attack!
 Mistake

Property!
 Availability!
 Reliability!
 Safety!
 Integrity!
 Maintainability Ns = 3 # 2 # 1 # 2 checks!

 = 12
Dependability Score: Coverage of dependability support of an OS.!

DS = Ns / Nr
Used for matching"

between OS and apps

(2) (3) (1)

Visualization
•  Visualize ticks and scores for intuitive understandings of!

•  What properties are covered by an OS,!

•  How each dependability support contributes to,!

•  How the dependability support in an OS is balanced,!

•  What evidences the ticks,!

•  Etc..

coverage contribution balance evidence

(2) (3) (1)

Limitation
•  Ticks are still abstract.!

•  E.g., a security mechanism is tolerant of DoS
attacks only.!

•  Such a detailed argument is done with assurance
cases.!

•  Overhead of dependability support mechanism in an
OS cannot be described with checks.!

•  Represented in assurance cases with benchmark
results (evidences).

Summary
•  Qualitative evaluation categories are proposed.!

•  Its target is operating systems (not generic open systems yet).!

•  Initial ideas for quantification and visualization are addressed.!

•  Used for comparison of different operating systems, and matching the
OS’s against applications’ dependability requirements.!

•  Future work!

•  Extend the metrics to cope with open systems more systematic way.
! will be done based on D-Case description.!

•  Further research on quantification and visualization!

