A Composition Kernel for Multi-core
Dependable Embedded Systems

Tatsuo Nakajima, Yuki Kinebuchi
Ubiquitous and Distributed Computing Lab.
Department of Computer Science
Waseda University

IFIP WG 10.4 Meeting Jan 23 2010

Overview

Composing Multiple Functionalities.

Overview of Our Research in the DEOS project

Composition Kernel

— Real-Time Resource Management
— Dynamic Virtual CPU Management
— Proactive Recovery Management

U

— Integrity Management 4 A 'al

1

Conclusion 3 B ur»‘r 1, -‘INI
b l” ‘ 7\ Y 'n.

b3 16

I' o 'Iil
\ o

10.1.23

Composing Multiple Functionalities

Reducing Cost, Complexity, Increasing Maintainability
— Many dedicated hardware to integrated hardware
Cloud Computing
— Composing various information servers
* Virtual machine monitor: VMWare, XEN
* Cyber-Physical Systems
— Composing various control functions
* ARINC 653(APEX)

* Information Appliances
— Information Processing
* Interaction with Human
— Control Processing
* Interaction with Physical Environment

10.1.23

From Usability to Persuasion

* Human decision is becoming harder due a large amount of
low quality and less structured information.

— If the environment returns appropriate feedback to users by
showing the effect of the current behavior, the users’ life become
more dependable because they can think more rationally.

— From entertainment to caring.

We are impossible to escape from
various attractive temptation.

Intelligent Robot ~ Need to integrate information
processing and control processing
- Low Overhead

- High Reliability
0) d - Real-Time Support
@ &C - Supporting Multicore Processors
. - Reusing applications and OSes
Sensor Network with minimum modification
Sensor Intelligent Digital TV Persuasion
Network Robot Platform Platform
Platform Platform

| Composition Kernel |

| Multicore Processor |

10.1.23

Open Systems and Composition

‘Windows Mobile 6

Intelligent Robot

Windows.

%% Mobile
Sensor Network Symb.an)
e symion I
0 9 g d :

Sensor Intelligent Digital TV Application
Network Robot Environment

Platform Platform Platform

Digital TV

| Composition Kernel |

| Multicore Processor |

Platform for Composability

DEOS Framework

RT App.| | RT App.
DEOS Linux PP PP Device Integrity
Drivers Management
Smp Support L4 Toppers | Thin Kernel | | Thin Kernel |

Composition Kernel

Multicore Processors

Composition kernel allows multiple OSes to run on multicore
processors with the minimum modification.

10.1.23

Additional Value by Composition Kernel

* Increasing composability of the entire system.

— Decreasing the cost to port existing applications without
violating the timing constraints of RTOS.

Using multicore processors in a more flexible way.

— Reducing the number of cores according to the system
load and handling dead cores.

Offering more flexible rebooting/recovering strategies.

— Enabling to use more optimistic strategies to increase the
availability.

* Maintaining the integrity of OS kernels.
— Detecting and repairing the violation of the integrity.

Design Issue

Our approach focuses on various 32-64 bits processors for embedded systems
that support or does not sup

Performance Engineering

Hybrid kernel

- offers high RT res
- requires large modi

virtualization

utes OSes without modifications
. roduces high overhead
Isolation s unsuitable for embedded systems

Para-virtualizatio Spatial
- requires modification to O
- embedded systems

10.1.23

Dependable Composabiity

* Real-Time Virtual CPU Scheduling
— Multiplexing CPU by multiple OSes
* Dynamic Multicore Virtual CPU Management
— Migrating VCPU among cores.
* Proactive Recovery Management
— Independent recovery of multiple OSes.
* Integrity Management
— Repair the integrity of guest OSes.

Real-Time Resource Management

Multi-OS platform
with dedicated processors

Applications
Multi-OS platform
With integrated processors

Peripherals | Shared § Peripherals

10.1.23

A Composition Kernel: SPUMONE

* OS kernels and SPUMONE reside in the same privileged address

space.

* SPUMONE switches the execution of OSes by storing and
loading the processor registers from and to the memory

* A main abstraction of SPUMONE is virtual CPUs(VCPU).

* CPU: SH7780(SH-4A ISA)

ke #” SH7780 400MHz (ISA: SH-4A)
A Q’%’ : 2 serial channels
6 timer channels

128MB DDR-SDRAM

100Mbps Ethernet x 2 SPUMONE

CF card adapter
2.5inch IDE adapter

Memory

Overhead Measurement

* Compared the time took to build
a Linux kernel with native Linux
and with virtualized Linux

Linux kernel build time

Linux only 68m5.898s -

Linux and 69m3.091s 1.4%
TOPPERS on
SPUMONE

* The overhead includes the time
consumed by TOPPERS timer
interrupt handler (1ms period)

RTOS: TOPPERS/JSP 1.3

GPOS: Linux 2.6.20.1

kernel and applications reside in the same address space
64MB
Devices

Serial channel 0
Timer channel 3

64MB
Devices: All the other
Root FS: NFS share (Fedora Core 5)

10.1.23

Engineering Cost

Modifications to guest Linux kernels (*.c, *.h, *.S, Makefile, Kconfig)

0s __________|AddedLOC__|Removed LOC

Linux 2.6.20.1 on SPUMONE (SH) 56 17
RTLinux 3.2 (Linux 2.6.9 / x86) 2798 1131
RTAI 3.6.2 (Linux 2.6.19 / x86) 5920 163
OK Linux (OKL4)(Linux 2.6.24 / x86) 28149 =

We only compared the modified LOC of the Linux kernel

The results do not include the LOC of the device drivers which provide
communication channels between an RTOS and Linux

$ diffstat kerne patch-2.6.9-rtl3.2-rcl # removed ‘defconfig’s
$ diffstat hal-linux-2.6.19-1386-1.7-01.patch
$ ohcount asm-14

Virtualizing Interrupts

Interrupt priority level assignment
— Utilize the interrupt priority level (IPL) mechanism of the SH processor

IPL = Interrupt Priority Level

RTOS GPOS RTOS
int. disable =—>| 0xf [« int. disable int. disable =—>| Oxf

Timer IPL =% 0xd |

Timer IPL =—_0Oxa Serial IPL —_0Oxa

int. enable =—>{ 0x8 GPOS
0x7 [« int. disable

Serial IPL = 0x6

Timer & Timer & Serial
Ox1 [« Serial IPL o] [
int. enable —»_0x0_le— int. enable |_0x0 fe— int. enable
imask imask
(a) Native OS (b) Modified OS

10.1.23

Temporal Isolation

100000

stress 032 ——

10000 |

User
000 CPU intensive Kernel
T processes
5w
H
3
10
1
04 Multi-OS with no stress on Linux
0 20 2 8 100 120 140
Delay [us]
100000 - : , T
stress -d 32 ~hdd-bytes 32MB ——
Applications
10000 PR
! '
I
I/0 intensive L..”.‘ User
1000 |
- processes (‘: Kernel
B (/O to CF card) |
Y
H
3
10 H VCPU VCPU
1 SPUMONE
CPU
o 40 60 80 100 120 140

Multi-OS with 1/0 stress on Linux

Dynamic Virtual CPU Management

* Distributed system model (Multikernel)
— One SPUMONE on each processor
— Each SPUMONE schedules VCPUs on its processor core.

— Each SPUMONE communicates with message passing
model implemented on inter-processor interrupt.
* VCPU can be migrated by passing its state to another SPUMONE

SMP

Hnex
VCPU VCPU VCPU VCPU VCPU MSRP1BASEOQ2
SPUMONE SPUMONE | [SPUMONE | [SPUMONE RP1 (SH 4A MP ISA)
[Core][Core][Core] [Core] 600MHz x 4

128MB DDR-SDRAM

10.1.23

Dynamic Virtual CPU Management

Applications Applications
(©0®
Linux
VCPU | VCPU

VCPU VCPU

SPUMONE

Multi-Core

Applications

T sroese
Multi-Core Multi-Core

Dynamic Virtual CPU Management

* Let us assume that RTOS preempts VCPU2 while VCPU2
executes a critical section.

* VCPU1 may wait for entering the critical section with a spin
lock until RTOS becomes idle and VCPU2 exits the critical
section.

— The situation is called “Lock Holder Preemption”.

» Existing approaches postpone the preemption until the critical
section is exited.

— This increases the jitters of RTOS. , fpplietons

* Cross-call executes a function
simultaneously in all cores.

10.1.23

10

The Effect of Lock Holder Preemption

Hackbench

RT
App.

RTOS

SMP
Linux

VCPU

VCPU

VCPU
SPUMONE

VCPU
SPUMONE SPUMONE SPUMONE

CPU CPU CPU CPU

Hackbench

No sharing
(RTOS 1CPU
Linux 3CPU)

15.0

+++ Sharing a core
(Linux 3.5 + TOPPERS 0.5)

12.5

o[el)

SMP
Linux
g VCPU VCPU
PUMON SPUMONE SPUMONE
CPU CPU CPU CPU

SMP
Linux

Hackbench

VCPU
SPUMONE

VCPU VCPU VCPU
SPUMONE SPUMONE SPUMONE

CPU CPU CPU CPU

Sharing
(RTOS 0.5CPU
Linux 3.5CPU)
%: RTOS

CPU utilization

Execution Time(Sec)

No sharing
(RTOS 0CPU
Linux 4CPU)

10.0

Ndd € xnun

NdD /¥ xnuiq

RTOS CPU UtilizationLinux
Hackbench(8procs) execution time

Current Solution and Problem

* Handling Multicore Anomalies

— Avoiding Lock Holder Preemption

* When an RTOS becomes runnable, but the preempted OS runs in a
critical section, the RTOS is migrated to another core.

— Handling Cross-Calls

* We are considering to use priority boost while executing cross-calls

and migrating VCPUs for Linux.

* Handling Dead Core

— What happens if a core is
dead while executing

a critical section.

score of hackbench

n sec. (lower is better)

of
1000 1500 2000 2500 3000 3500 a000 4500 5000

Loops of hackbench

10.1.23

11

Current Open Questions

Global scheduling policy

— Mapping policy between PCPUs and VCPUs and migration
policy of VCPUs.

* Performance, Real-Time, Energy Consumption
— Cache affinity of VCPU migration with a shared cache.
Power management interface
— Coordinating respective PM policies in respective OSes.
Local VCPU Scheduling in each PCPU.
— Cyclic Executive, Fair Scheduling
Guest OS kernel: User space or Kernel space ?

— Existing debugging tools for embedded systems assume that
guest OS kernels run in the kernel space.

Proactive Recovery Management

* How to recover composed multiple platforms ?

Fault Physical Memory Layout
‘,_*:'
A . .
pp.- RO Working Space
App App — {" User
* | App Space
= — : RTOS and App
Driver RT M .
Linux ‘Kernel
RT (6N .
- Space
(0N N
- RTOS and App
| | || | Y| Local Memory
| SPUMONE .
in Each Core
[T [[T
Linux and App
Corel Core2| | Core3 Cored

10.1.23

12

Proactive Recovery Strategy

* Microrebooing: Various applications on RTOS do not have
complex persistent states and it is possible to recover simply
by rebooting.

— Using proactive rebooting when something happens.
— Itis possible to put some small states in a shared persistent
space to speed up the rebooting.

* Error Virtualization: In a case of Linux, rebooting may be
postponed until Linux becomes idle.

— When an error occurs in the kernel, it is translated to an error of
a system call or a signal to an application as much as possible.

— By scheduling rebooting, it is possible to reduce power
consumption or decrease the user’s frustration.

* It is optimistic recovery strategy, and the approach does not
always work well.

Building Reliable Application

* Intelligent Robot

Intelligent Robot — If the rebooting time is sufficiently short,
rebooting can recover the subsystem.

— If not, a system should be decomposed
into small subsystems, and each
¢ % subsystem can be rebooted if it loses the
0 © G Og integrity.
® &C * Digital TV
— Need to consider user satisfaction.
— Error virtualization.

¢ Sensor Network

S — Rebooting can recover the subsystem.
= E (% ?% * Persuasion Framework
o 4- — Rebooting can recover the subsystem.

Persuasion Platform ® We are planning to investigate how our
approach affects the entire reliability via
fault injection.

Digital TV

10.1.23

13

Integrity Management Service

* The integrity management service detects the violation of the
integrity of the kernel and tries to repair the integrity
autonomously.

* The integrity is violated due to a guest OS’s internal errors, or due
to other OSes’ errors if there is no isolation among OS kernels.

* The integrity repair makes the kernel in a consistent state
optimistically. The complete integrity can be ensured by a
rejuvenation strategy.

* The integrity management services is isolated by using a location
memory. Monitoring

File Data Structures Service

D . ~— Integrity
- @™

Linux Dynamic Loadqpl Local

Monitoring. SPUMONE SPUMONE SPUMONE
Memor
Module LW Os
Scheduler

Data Structure Core 1 Core 2 Core 3 Core 4
| SPUMONE |

RTOS Linux

VCPU1 VCPU2 VCPU3 VCPU4

Towards Next Step Composability

=3 Freglrer! Interaction with
= Physical
Environment
Relems
I TN
Cyber-Physical Systems
4 I

Interaction with
Information

;('l

‘;_,"v'ft o5 T
w—ehY =2
- amazohorq - %

Cloud Computing Google

Hybrid Systems Services, Business, Innovation

Timing constraints
Dependability, Safety

Intelligence - \
Machine 0:%)
" Nafuld

Ambient Intelligence

Human, Social, Economic
Interaction with Human Factors

10.1.23

14

Thank youl!

Tatsuo Nakajjima
tatsuo@dcl.info.waseda.ac.jp

10.1.23

15

