Verification of Real Time Operating
System with Model Checking

Toshiaki Aoki

Japan Advanced Institute of Science and Technology

Background

RTOS (Real-Time Operating Systems) are used for
embedded systems.

e Those RTOS are provided for various platforms by various
companies.

Standards of RTOS are proposed.
e OSEK/VDX(AUTOSAR OS), uITRON, etc.

Standards are defined as documents described in natural
language.

e The documents are likely misunderstood.

e The documents themselves tend to be ambiguous.

Those may lead to implement RTOS which does not
conform to the standards.
e Such RTOS makes embedded systems unreliable.

Alm

e \We are proposing a method to ensure that RTOS
conforms to the standards.

e Ourtargetis OSEK/VDX RTOS.
e Itis very hard to ensure the conformance after the
Implementation by testing.

e Test cases to ensure the conformance depend on the inside of
the implementation.

e Describing exhaustive test cases is very hard.

e \We ensure the conformance in the design phase of
RTOS development.

e We apply model checking to the design of RTOS to exhaustively
check it.

e We are using Spin model checker.

Approach

e \We directly describe RTOS design in Promela.
e Promela is the specification language of Spin.

e \We need the other Promela descriptions for checking the design.
e How to use RTOS and expected results are described in them.

e \We obtain such Promela descriptions b dy modeling the possible usage of OSEK/
VDX RTOS and expected results based on the specification.

target OSEK/VDX Specification
\

straightforward

directly describe RTOS\
design in Promela.

Modeling the possible
usage of RTOS and
expected results.

__

Promela description RTOS design ;
for checking the design || \— § /

OSEK/VDX RTOS

e OSEK/VDX RTOS is used for automotive systems.
e Currently, its standard is being developed as AUTOSAR OS.
e The most of the OSEK/VDX standard specification is inherited to
AUTOSAR OS.
e OSEK/VDX RTOS deal with preemptive fixed-priority
multi-tasks, resources, interrupts, and so on.

e The resources are similar to lock/unlock primitives with a priority
ceiling protocaol.

e Fixed priorities are assigned to the interrupts.

Task A < Task B Task B < Task A
preempt terminate
Task A) Task A
Task B Task B 7__7
activate terminate activate
> >

time time

Design of OSEK/VDX RTOS

e We focus on the scheduler of RTOS.
e The most of the specification defines how to schedule the tasks.
e |tis easy to describe the scheduler in Promela.

e The scheduler is realized by task queues and tables to keep their
information.

e Those are straightforwardly described in Promela.

e You can download the Promela description of JITRON RTOS which is similar
to OSEK/VDX RTOS in the following URL.

e http://aoki-www jaist.ac.jp/~toshiaki/modules/tinyd0/index.php?id=10

The scheduler of OSEK/VDX RTOS /] \
LI

|:| TCB
L L I

task queues

tables for resource and

K interrupts management/

Design Verification

e RTOS is an open system.
e RTOS does scheduling of the tasks if it gets stimulus
such as system call invocations.

e RTOS does not do anything if it does not get any
stimulus.

e \We need the description of the outside of RTOS
to verify the RTOS design.
e The outside consists of an application which invokes

the system calls and hardware which causes the
interrupts.

e The outside of the verification target is called an
environment.

Environment

e The description of an environment consists of

e invocations of the system calls of RTOS.
e represented as state transition models with the system calls.

e expected results of those invocations.
e represented as assertions assigned to those states.
e Model checking the RTOS design in combination with
the description of the environment by Spin.

RTOS design Environment (2 Tasks, Task 1<Task 2)

N A

L L | Invokes

1L] < ActlvateTask(li/((SUS, SUS)]‘\1 :TerminateTask()
[l

LI 1L info (RUNSUS) (RUNSUS)

ActivateTask(2)
(RDY,RUN) 2:TerminateTas®

\ 4

A\ b/

Approaches to Describe
Environments

e Automatic generation by static analysis on programs.
e BEG (Bandera Environment Generator) [O.Tkachuk '03]

e Effective if the programs corresponding to the environment
available.

e Usually not the case in the design stage.
e Invoke all the system calls non-deterministically
e Universal environment [J.Penix '00]
e Able to check all the execution sequences exhaustively.
e Description of properties becomes complex. State explosion.

e Our approach: Modeling execution sequences in a specific range
depending on the properties to check.

e EXx.) Normal execution sequences, abnormal execution
sequences, and interrupt handling ...

e Description of properties becomes simple. Possible to avoid state
explosion.

Environment Modeling

e \arious environments can be considered.

e The number of tasks, the variation of priorities, number of the resources,
invocation relations of the system calls, and so on.

e Itis impossible to make all the descriptions of the environments by
hand.

e If all the environments are realized by one Promela description, that may
cause state explosion problem.

e \We model the variations of the environments, then automatically
generate the Promela description of each environment.

Possible Environments Modeling

Environment Model

a

« 2 tasks with different priorities.
« 1 task and 1 resource.

« 2 tasks and 1 resource.
« 1 task and 2 resource.

Automatic Generation

Promela Descriptions
of Environments

RTOS Design [TaskA(pr:5) TaskA(pr 5) TaskA(pr 5)] [TaskA(pr:5) GetRelease
v Actlvate v Actlvate Get/Release y Activate [ResA(pr:8)]
_ TaskB(pr:3) TaskB(pr:5) ResA(pr:8) TaskB(pr:5
Model Checking [] [] [] [)]

Environment Modeling

e \We model possible structures of the environments using
class diagram.

e The variations of the environments are represented as
multiplicities of associations among classes.

e Constraints on attribute values and multiplicities are described in
OCL (Object Constraint Language).

task:(0..M)
Possible Environments JEN
pr:{1..P} :
= inv
states {Sus,Rdy,Run} R T - self.res->forall(r | pr=<r.pr) J
» 2 tasks with different priorities. tsk:(1..M) I_ \\
» 1 task and 1 resource. S
« 2 tasks and 1 resource. res:(0..N) \\
1 task and 2 resource. Resource assert
self@Rdy implies
pr:{1.Q} GetTaskState(self.id)==GetReady()
states {Fre,Occ(n:1..M)} self@Run implies
GetTurn()==self.id 7

Environment Modeling

e The possible behavior of the tasks and resources are described
using statechart diagram with some extension.

e Introducing a derived transition.

e The derived transition causes the state transition of the other instances.

o lSSZ1 -> S2 {ins} causes the state transition of the instance 'ins' from 'S1' to
e The derived transition makes the statechart model simple.

A transition of task behavior

Sus

Run

[tid==self.id & ExRun() &
GetPr(GetRun())<self.pr]

ActivateTask(tid)

| Run->Rdy { GetRun() }

<

\

(1.

Currently, a task is in the suspended state, and there is
another task which is in the run state.

EX) Task 1: Sus, Task 2: Run, ...
If the task having a priority which is higher than the
running task moves to the run state, the running task
moves to the ready state simultaneously.

EX) Task 1: Run, Task 2: Rdy

Environment Modeling

e The possible behavior of the tasks and resources are
described using statechart diagram with some extension.
e \We assign an assertion to each state.

e The assertion checks whether an observed state of RTOS is the
expected one or not.

Statechart Model for Task Behavior

DeclareTask
(self.pr,self.id) [tid==self id&ExRun()& [tid==self.id& ExRun()]
GetPr(GetRun())<self.pr] ActivateTask(tid)
ActivateTask(tid)
(| Run->Rdy {GetRun()}
Rdy SUS | [tid==selfid&ExRdy()& Run
[tid==self.id&ExRun()& I0ccRes(self)] e
. : tid==self.id&!ExRd
(GetPr(GetRun())>=self.pr] TerminateTask(tid) ! >elLl XRdy()
ActivateTask(tid) | Rdy->Run {GetRdyMax()} &!0ccRes(self)]
TerminateTask(tid)

Generation of Environments

o We automatically generate environments from the environment
model.
e A Promela description of an environment is generated for each of the
variations described in the environment model.
© Procedure of the generation.
1. Generate all the object graphs in a given bound from the class model
of the environment model.

2. Make the state transition models of each of the object graphs based
on the statechart model of the environment model.

3. Translate the state transition models into Promela descriptions.

_ Object Graphs
Environment Model ~ poooemmmmmmmeomooees state transition models

Promela descriptions
llnstant|ate %E:;l %E:;l for generated object graphs P

= '15'
[z@} _____ e = %»

2.Composing behavior with the |
evaluation of the constraints
3.Translation

lLl

g L__ 7

Generation of Environments

1. Generate all the object graphs in a given bound
from the class model of the environment model.

Environment Model

Task

pr:{1..3}
states {Sus,Rdy,Run}

[_] res:(0..3)

Resource

pr:{2..4}
states {Fre,Occ(n:1..2)}

task:(0..2)

Instantiate

Object Graphs

T1:Task

pr=1

T2:Task
pr=3

T1:Task

pr=1

T2:Task

pr=1

T1:Task

pr=1

T1:Task
pr=1
R1:Resource | R1:Resource
pr=2 IPHEN pr=3
pr=3
T1:Task
pr=1
R1:Resource | R1:Resource
pr=2 T2:Task pr=3
pr=1

T2:Task
pr=3

pr=3
R1:Resource | R1:Resource
pr=2 IPHEN pr=3
pr=1

Generation of Environments

2. Make the state transition models of each of the object graphs based
on the statechart model of the environment model.

Environment

Compose the state
transition models

Environment Model An object graph with the evaluation

of the constraints.
Task T1:Task
7)) pr=1

| R1:Resource

T2:Task pr=2 i
pr=3 1
h(r .)
g(tid) 3.We can directly

o / | T1-Task | translate the
| environment to the

f(é)@ Promela description.
h(R1 o(T1)

Resource

3 Instantiate state transition\
@‘ models based on the '
[JeP(id)| | environment model. |

Environment Generator

e \We have implemented an environment generator.
e Implemented in SML/NJ.

e The environment model is described in text.
e Automatically generates Promela descriptions of all the environments.

Environment model (rtos.env)

Promela description (casel.spin)

Generation Results

e \We generate various environments for the verification of the
RTOS design by our environment generator.

e |t takes very long time to check the RTOS design against all
the descriptions.

e EXx) It take 12 hours to check about 1000 descriptions by the
following machine.

e CPU: Core2DUO 2.13 GHz, Memory 2Gbyte.
e It may take 12*50 = 600h= 25 days (about 1 month).

The number of generated Promela descriptions

n 4 (0.0s) 20 (0.0s) 140 (0.5s) 1540 (81.3s) V¥

1| 8009 104 (0.2s) 1496 (31.6s) | 30664 (9.4h) [ESNSEEER

2 | 12(0.15) 468 (2.65) 15132 (56.1m)

(5| o0 | w0

Verification by Computer Cluster

e We are doing model checking by computer cluster.
e Check a large number of the Promela descriptions by many workstations.

e Currently, we are using collaborative facilities for verification, named
'SATSUKI" in AIST.

e We did some experiments.

e \We checked all the description by the following cluster.

e The number of nodes: 70

e Sun Fire X4150, Xeon X5260 3.3GHz Dual Core, 8Gbyte Memory.
e About 6 hours.

Environment Generator/ Accumulate results and analyze them.
Distributing descriptions to cluster.

Environment Modeling Display the result

Computer Cluster

Verification Results

e \We found several bugs of the RTOS design by this approach.

e We first checked the RTOS design by some environments and remove
found bugs.

e Then, we verified it by this approach.

e A found bug.

e Structure of tasks and resources.
e Tasks: T1 with the priority 3, T2 with the priority 1.
e Resources: R1 with the priority 4, R2 with the priority 2.
e R1isusedby T1and T2. R2 is used by only T2.
e This structure is somewhat special.

e In this case, the priority ceiling protocol was not correctly realized in the
RTOS design.

e TCB was not updated when a task returns a resource for a specific execution
sequence.

e \We made a mistake in condition branches .

Discussion

e Our approach can be regarded as bounded model
checking.

e Variations are described in the class diagram.
e \We instantiate a part of them by bounding the multiplicities
and attribute values.
— It is useful to find bugs in the RTOS design.

e Comparing the model checking results with each other help
us to find the bugs.

e \We need theorem proving to ensure that the RTOS
design is correct for all the variations.
e If we focus on a specific RTOS, the variations may finite.

e However, state explosion problem may occur because
RTOS usually deals with hundreds of tasks.

Discussion

e Our approach makes it possible to do model checking in parallel.
e \We statically divide state space to be checked according to the
variations of the environments.

e \We have advantage to searching larger state space of the RTOS
design.

e Parts of the state spaces checked by the generated environments are
overlapped.

e We still have an advantage in the state space.
e Many results are obtained.

e ltis very hard to check all of them precisely.
e 100,000 checks may return 100,000 counter examples.

e Conversely, we obtain much information about the checks.

e Applying statistic methods such as cluster analysis and machine learning for
analyzing the results is meaningful.

e Visualizing the results allows us to intuitively understand what happens in the
RTOS design.

Discussion

e We carefully made the environment model based on the OSEK/VDX
specification document.

e Extracting descriptions of the tasks scheduling from the document

e Removing mistakes made in the transformations of the document.

Those descriptions are scattered in the document.

e We make pre/post conditions of each system calls from those descriptions.
The conditions are described in natural language mixed with logical formulas.

e We construct the statechart model based on the pre/post conditions.
e Formal treatments are needed.
e Some parts of the document are ambiguous.

Extract

OSEK/VDX
specification
document

/
I

/

description
of task schedulingy

description
of task scheduling
14

description

of task scheduling
14

ActivateTask
pre: ...
post:

ChainTask
pre: ...
post:

TerminateTask
pre: ...
post:

4

ActivateTask

ChainTask

pre/post

TerminateTask

Ongoing Works

e Model checking a huge number of descriptions using
computer cluster.

e How to assign the descriptions to machines of the computer
cluster.

Achieve the load balance of the machines.

e How to analyze results obtained by model checking.
Visualization of the results.
statistical analysis of the results.

e Formalization of the OSEK/VDX specification document.
e \We are describing the document in VDM.
|ldentifying what problems are to formalize standard documents.

e We will start to study about desirable styles of standard
documents in a formal specification language.

Working with Prof.Kokichi Futatsugi's group using Cafe/OBJ.

Ongoing Works

e We are verifying a RTOS which will be embedded in a
new series of cars.

e Collaborating with DENSO and NEC(NEC Electronics and NEC
Microsystems)

e Conforming to ISO61508/26262 standards.
e Improving the quality of RTOS.

e Mainly dealing with the design and testing of RTOS.

RTOS design
) RTOS
UML diagrams J Test case generator
Promela descriptionsj
Test Cases
f Models for testing J
Test Cases
Review and Model Checking

Conclusion

e We introduced our approach to verifying a RTOS design
with model checking.
e Modeling environments of RTOS.

e Automatic genenration of Promela descriptions for model
checking the RTOS design.

e Model checking is performed in computer cluster.

e Our environment modeling is applicable not only to the
OSEK/VDX RTOS design but also to the other ones.

e That will be effective to systems which have various
environments such as OS, middleware and libraries.

e \We are developing tools which perform model checking in
computer cluster, then analyze and visualize those results.

e \We are applying our approach to practical OSEK/VDX
RTOS with some automotive companies.

e Testing specification called MODISTARC
Is provided to ensure the conformance of
RTOS to the OSEK/VDX standard.

e MODISTARC does not provide test cases but
functions to be tested.
e \WWe need define test cases based on MODISTARC.

e It is very hard to define exhaustive test cases
based on MODISTARC.

e The test cases depend on RTOS products.

