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An operating system is safe 
1)  Because all source codes are reviewed by many engineers, and/or 
2)  Because the system has been running for more than ten years without any 

troubles 

When a new OS function is implemented to be adapted to a new 
environment or against some threat, how the OS safety is guaranteed.	




Overview	


 Major Concerns in P-Bus and DEOS Verification Tools 
  Operating System is forever modified/upgraded 

  To provide a new dependability against some threat or some malfunctions 
  To provide a new function required by users 
  To run on new computer architectures, e.g., many cores, new devices, … 

  Bugs are often injected in a new kernel module [1] 

 Approach 
  Providing API with formal specification for OS extensions 

  A new extension is implemented using the API 
  Providing verification tools to check if the new OS modules are correct 

 Products 
  P-Bus 
  DEOS model and type checkers 
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[1] A. Chou et al., “An Empirical Study of Operating System Error,” In Proc. 
18th ACM Symp. Operating System Principles (SOSP) , pp. 73-88,  2001. 
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An Overview of P-BUS	


  P-BUS 
  Abstraction of Kernel Functions 
  API with formal specification for 

programming P-Component 
  Linux Kernel Module 

  P-Component 
  implements an additional kernel 

function to enhance dependability 
  E.g., fault recovery/avoidance 

mechanisms, monitoring/
tracing 

  implements new device drivers 
  runs under the kernel mode 

  Not implemented by a user 
process such as micro kernels 

  is statically verified by DEOS tools 

  Linux kernel 
  is a minimum Linux kernel 
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•  SPUMONE & EOS 
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Linux 

P-Bus Design Philosophy	


 Linux	

  APIs for Kernel Extensions 

  No documentations 
  Programmers misunderstand 

how to use APIs provided by 
Kernel 

  Varying 
  Different minor versions may 

differ different APIs ! 

 P-Bus 
  Abstraction of Kernel Function 
  API with formal specifiation for 

programming P-Component 

 P-Component 
  implements an additional kernel 

function to enhance dependability 
  implements new device drivers 
  is statically verified by DEOS tools 
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An Example of P-Bus Interface and Verification	
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int pbus_bmtx_extrylock(pbu_bmtx_t *mtx) 
    tries to hold a blocking mutex. 

/*@ requires context == PBUSV_CTX_PROCESS; 
      requires \valid(mtx); 
      requires  *mtx != PBUSV_UNINITIALIZED; 
      assigns   *mtxt; 
      ensures  \result == 0 || \result == EBUSY; 
      ensures  \result == 0  *mtx == EX_LOCKED; 
      ensures  \result == EBUSY  *mtx == \old(*mtx); 
*/	


Context	
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  Context	
  only	


May	
  block	
  or	
  not	
 No	


Pre-­‐condiHons	
 mtx	
  must	
  be	
  iniHalized	
  by	
  
pbus_bmtx_init	


Return	
  value	
 0	
  on	
  success	
  
	
  EBUSY	
  on	
  failure	


Post-­‐condiHons	
 mtx	
  shall	
  be	
  locked	
  on	
  success,	
  	
  
otherwise	
  mtx	
  is	
  kept	
  unchanged	




P-Bus: Overhead	


 Extendibility 
 Network Driver 

  RI2N, high-bandwidth and 
fault-tolerant network with 
multi-link Ethernet [Miura08] 

 Schedulers 
  EDF, Earliest Deadline First, 

scheduler 
  Gang scheduler 

  A group of processes , a 
parallel job, runs 
simultaneously in  a multi-
core  computer 

 Overhead 
 Scheduler 

  Comparing with the schedule 
function 

 Fork/exit system call	
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DEOS Type and Model Checkers	


Type checker	
 Model Checker	


Target safety 
property	


Basic safety 
(e.g., memory safety, etc.)	


Advanced safety (e.g., consistency 
of locks, correct API usage, etc.)	


Target program	
 C source code	

Binary executable	


C source code	


Spec. description	
 (almost)Unnecessary	
 Necessary 
(Describing properties to be 
verified as specification, etc.)	


Verification time	
 short	
 long	
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Overview of  DEOS Type Checker	
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Overview of DEOS Model Checker	
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int pbus_bmtx_extrylock(pbu_bmtx_t *mtx) 
    tries to hold a blocking mutex. 

/*@ requires context == PBUSV_CTX_PROCESS; 
      requires \valid(mtx); 
      requires  *mtx != PBUSV_UNINITIALIZED; 
      assigns   *mtxt; 
      ensures  \result == 0 || \result == EBUSY; 
      ensures  \result == 0  *mtx == EX_LOCKED; 
      ensures  \result == EBUSY  *mtx == \old(*mtx); 
*/	


Context	
 Process	
  Context	
  only	


May	
  block	
  or	
  not	
 No	


Pre-­‐condiHons	
 mtx	
  must	
  be	
  iniHalized	
  by	
  
pbus_bmtx_init	


Return	
  value	
 0	
  on	
  success	
  
	
  EBUSY	
  on	
  failure	


Post-­‐condiHons	
 mtx	
  shall	
  be	
  locked	
  on	
  success,	
  	
  
otherwise	
  mtx	
  is	
  kept	
  unchanged	
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Linux Kernel	


RI2N P-Component	


  RI2N is a fault-tolerant network developed at University of 
Tsukuba.  

  The fault-tolerance is implemented with redundant network 
devices 

  The implementation is independent of development of P-Bus 
and DEOS verification tools. 
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Case Study: How many bugs have we found ?	


 Three Bugs 
 Two Bugs found by DEOS model checker 

 Missing lock release 
 Accessing uninitialized timers 

 One Bug found by DEOS type checker 
 Accessing unallocated memory 
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Bug 1: Missing lock release (found by DEOS model checker)	
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static int ri2n_add_slave(pbus_netif_t *netif, 
                          pbus_netif_t *slave_netif) { 
  struct ri2n_priv_t *priv = anlab_netif_private(netif); 
  … 
  pbus_net_giant_lock(); 

  root = priv->chl_list; 
  if (root == NULL) { 
    priv->chl_list = root = 
      pbus_alloc(sizeof(struct ri2n_list), 
                 PBUS_ALLOC_NOWAIT | PBUS_ALLOC_ZERO); 
    if (root == NULL) { 
      ri2n_error_msg("pbus_alloc fault\n"); 
      return 1; 
    } 
  …	


A	
  lock	
  is	
  acquired	
  here,	
  
but	
  …	


Forgot	
  to	
  release	
  the	
  lock!	




Bug 2: Accessing unallocated memory (found by DEOS type checker)	
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static int ri2n_priv_init(pbus_netif_t *netif) { 
  struct ri2n_priv_t *priv = pbus_netif_private(netif); 
  … 
  pbus_nbmtx_init(&priv->tablock); 
  … 
} 

int ri2n_setup(void) { 
  pbus_netif_t *pbus_netif; 
  … 
  if (0 != pbus_create_netif( 
             &ri2n_netif_ops, 
             &ri2n_proto_handler, 
             &ri2n_netif_param, &pbus_netif)) { 
    … 
  } 
  … 
  rval = ri2n_priv_init(pbus_netif); 
} 

The memory pointed by “priv” has 
not been correctly allocated, but it 
works because the area has not 
been used for other purposes 

No valid pointer is 
assigned to “priv”! 



Bug 3: Accessing uninitialized timers (found by DEOS model checker)	
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void ri2n_cleanup(void) { 
  … 
  pbus_timer_cancel(&ri2n_buf_timer); 
  … 
} 

int ri2n_setup(void) { 
  … 
  rval = ri2n_priv_init(pbus_netif); 
  if (0 != rval) { 
    ri2n_error_msg("ri2n_priv Initialize() fault\n"); 
    ri2n_cleanup(); 
    return -1; 
  } 
  … 
  pbus_timer_init(&ri2n_buf_timer, 
                  &ri2n_buf_timer_ops, NULL); 
  … 
} 

A timer is accessed here, but 
… 

エラーパスではタイマーは	
  
初期化されていない	
  

The timer may not be initialized 
in error paths! 



# of False Positive is 1	


 Locks in memory heap could not be handled correctly by 
our model checker	


static void ri2n_buf_timer_fn(pbus_timer_t *timer) { 
  … 
  for (i = 0; i < RI2N_HASHLEN; i++) { 
    … 
    do { 
      if (ptr->cont != NULL) { 
        … 
        pbus_nbmtx_exlock(&node->lock); 
        … 
        pbus_nbmtx_exunlock(&node->lock); 
        … 
      } 
    } while (ptr != root); 
  } 
  … 
} 

The	
  lock	
  seems	
  to	
  be	
  
acquired	
  and	
  released	
  

correctly	
  …	
  

It seems that the lock is acquired 
and released correctly, but the 
current model checker does not 
take care of pointer variables 
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Related Work: Model Checking Tools	


  BLAST (Thomas A. Henzinger et al., EPFL) 
  Properties reducible to graph 

reachability can be verified 
  Properties can be specified by users 

  State-machine based 
specification language 

  C source code can be verified directly 
  Lazy predicate abstraction approach: 

more expensive, less conservative 
  SDV (Microsoft) 

  Properties reducible to graph 
reachability can be verified 
  Properties cannot be specified by 

users 
  C source code can be verified directly 

  Predicate abstraction approach: less 
expensive, more conservative 

  SPIN (Gerard J. Holzmann et al., Bell 
Labs ?) 
  Properties described in LTL (Linear 

Temporal Logic) can be verified 
  Properties can be specified by users 

  C source code cannot be verified directly 
  DEOS Model Checker 

  Properties reducible to graph 
reachability can be verified 
  Properties can be specified by users 

  Assertion based specification 
language (a dialect of ACSL) 

  C source code can be verified directly 
  Predicate abstraction approach: less 

expensive, more conservative	
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Related Work: Type Checking Tools	


  CCured (George Necula et al., UCB) 
  Memory safety is ensured through type inference 
  A little modification of C source code is (typically) required 

  Fail-Safe C (Yutaka Oiwa, AIST) 
  Memory safety is ensured by inserting dynamic checks 
  No modification is required basically 

  Deputy (Jeremy Condit et al., UCB) 
  Memory safety + α (invariants about null-terminated pointers etc.) is ensured 

through type checking of dependent types and inserting dynamic checks 
  Explicit type annotations are required basically 

  DEOS Type Checker 
  Memory safety is ensured by inserting dynamic checks 
  Memory safety of generated assembly code can be verified through type checking 
  No modification is required basically 
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Rethinking P-Bus/P-Component (1/2)	


  Original Design Philosophy 
  P-Bus APIs define the basic kernel 

functions and extension capabilities 
  API for extensions 

  Device drivers, scheduler, and so on 
  The API is different than API for 

customization/extension provided 
by original Linux 

  API for basic kernel operations 
  Locking /unlocking  semaphore, 

sleep/wakeup, and so on 

  P-Bus APIs are defined with formal 
specification 
  A kernel module implemented with 

the P-Bus API is called a P-
Component 

  A P-Component is validated using 
the DEOS verification tools 

  Issues in P-Bus 1.0 
  It is assumed that all extensions are 

described using P-Bus APIs 
  This approach is something like 

defining the specification of a new 
micro kernel inside Linux kernel 

  Actual Linux extensions are based on 
extension capabilities provided by 
Linux kernel with patching 
  P-Bus does not assume such a 

case 
  P-Bus approach is creation of a new 

world in the Linux kernel, that might 
not be accepted by the Linux 
community 
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Rethinking P-Bus/P-Component (2/2)	


 P-Bus 2.0 
  Because the Linux kernel provides APIs for customization/extension, the 

specification of those APIs is formally defined 
  VFS, network/block/character device interface 
  Socket interface 
  Netfilter interface 
  … 

  API for basic operations used by extended modules is formally defined. 
This is the same as P-Bus 1.0 
  Locking /unlocking  semaphore, sleep/wakeup, and so on 
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Summary	


 P-Bus/P-Component and DEOS type and model checkers 
have been introduced 

 A result of the case study shown in this presentation 
demonstrates that our approach is effective and 
contributes  safety of OS modules 

 However, P-Bus and DEOS verification tools prove limited 
correctness of OS modules. Functional properties of OS 
modules cannot be validated unlike the seL4 approach 
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