
P-Bus and DEOS Verification Tools:
Safe Extension Infrastructure in Linux Kernel	

Yutaka Ishikawa, Hajime Fujita,
Toshiyuki Maeda, Motohiko Matsuda,

University of Tokyo
Shinichi Miura, and Mitsuhisa Sato

University of Tsukuba

1	

An operating system is safe
1)  Because all source codes are reviewed by many engineers, and/or
2)  Because the system has been running for more than ten years without any

troubles

When a new OS function is implemented to be adapted to a new
environment or against some threat, how the OS safety is guaranteed.	

Overview	

 Major Concerns in P-Bus and DEOS Verification Tools
  Operating System is forever modified/upgraded

  To provide a new dependability against some threat or some malfunctions
  To provide a new function required by users
  To run on new computer architectures, e.g., many cores, new devices, …

  Bugs are often injected in a new kernel module [1]

 Approach
  Providing API with formal specification for OS extensions

  A new extension is implemented using the API
  Providing verification tools to check if the new OS modules are correct

 Products
  P-Bus
  DEOS model and type checkers

2	

[1] A. Chou et al., “An Empirical Study of Operating System Error,” In Proc.
18th ACM Symp. Operating System Principles (SOSP) , pp. 73-88, 2001.

Outline of Talk	

 P-Bus 1.0
 DEOS Verification Tools
 Model Checker
 Type Checker

 Case Study
 Related Work
 Rethinking of Our Approach
 Summary

3	

An Overview of P-BUS	

  P-BUS
  Abstraction of Kernel Functions
  API with formal specification for

programming P-Component
  Linux Kernel Module

  P-Component
  implements an additional kernel

function to enhance dependability
  E.g., fault recovery/avoidance

mechanisms, monitoring/
tracing

  implements new device drivers
  runs under the kernel mode

  Not implemented by a user
process such as micro kernels

  is statically verified by DEOS tools

  Linux kernel
  is a minimum Linux kernel

4	

Linux Kernel

P-BUS

Applications	

P-component

robust
network

P-component

Check-
pointing

P-component

Accounting

P-component

Scheduler ・・・
P-component

Fault
detection

DEOS Model and Type Checkers	

CPU&
Scheduler	
 Network	
Memory

Mgt.	

Process/
Thread	

Interrupt/
Syscall	
 ・・・

EOS

SPUMONE (Virtual Machine)	

Linux
Monitoring

•  SPUMONE & EOS
•  monitors the Linux activity to detect malfunctions

and to recover the OS

Linux

P-Bus Design Philosophy	

 Linux	

  APIs for Kernel Extensions

  No documentations
  Programmers misunderstand

how to use APIs provided by
Kernel

  Varying
  Different minor versions may

differ different APIs !

 P-Bus
  Abstraction of Kernel Function
  API with formal specifiation for

programming P-Component

 P-Component
  implements an additional kernel

function to enhance dependability
  implements new device drivers
  is statically verified by DEOS tools

5	

Linux

P-Bus Core	

P-Components

File
System	

Device
Driver	

Kernel
Modules

Scheduler	
File
System	

Device
Driver	

An Example of P-Bus Interface and Verification	

6	

Runtime

Build	
 System

Development Phase
P-­‐Component	
 	

P-­‐Component	
 Binary	

DEOS	
 Model	
 Checker	

DEOS	
 Type	
 Checker	

Dynamic
Load	

P-­‐Bus	
 +	
 Linux	
 	
 Kernel	

Compile	
 and	
 Link

Verified Certification	

Check	

int pbus_bmtx_extrylock(pbu_bmtx_t *mtx)
 tries to hold a blocking mutex.

/*@ requires context == PBUSV_CTX_PROCESS;
 requires \valid(mtx);
 requires *mtx != PBUSV_UNINITIALIZED;
 assigns *mtxt;
 ensures \result == 0 || \result == EBUSY;
 ensures \result == 0  *mtx == EX_LOCKED;
 ensures \result == EBUSY  *mtx == \old(*mtx);
*/	

Context	
 Process	
 Context	
 only	

May	
 block	
 or	
 not	
 No	

Pre-­‐condiHons	
 mtx	
 must	
 be	
 iniHalized	
 by	

pbus_bmtx_init	

Return	
 value	
 0	
 on	
 success	

	
 EBUSY	
 on	
 failure	

Post-­‐condiHons	
 mtx	
 shall	
 be	
 locked	
 on	
 success,	
 	

otherwise	
 mtx	
 is	
 kept	
 unchanged	

P-Bus: Overhead	

 Extendibility
 Network Driver

  RI2N, high-bandwidth and
fault-tolerant network with
multi-link Ethernet [Miura08]

 Schedulers
  EDF, Earliest Deadline First,

scheduler
  Gang scheduler

  A group of processes , a
parallel job, runs
simultaneously in a multi-
core computer

 Overhead
 Scheduler

  Comparing with the schedule
function

 Fork/exit system call	

7	

Linux 2.6.24.7
Dual Core AMD Opteron Processor 175 (2.2GHz)

+0.09 %	

+0.76 %	

nsec	

Outline of Talk	

 P-Bus 1.0
 DEOS Verification Tools
 Model Checker
 Type Checker

 Case Study
 Related Work
 Rethinking of Our Approach
 Summary

8	

DEOS Type and Model Checkers	

Type checker	
 Model Checker	

Target safety
property	

Basic safety
(e.g., memory safety, etc.)	

Advanced safety (e.g., consistency
of locks, correct API usage, etc.)	

Target program	
 C source code	

Binary executable	

C source code	

Spec. description	
 (almost)Unnecessary	
 Necessary
(Describing properties to be
verified as specification, etc.)	

Verification time	
 short	
 long	

9	

Overview of DEOS Type Checker	

C	
 	
 source	

code	

Compiler	
 to	

TAL	

TAL	

assembly	

code	

TAL	

assembler	

Binary	

executable	

Type	

informaHon	

TAL	
 type	

checker	

Result:	

“This	
 program	
 is	

memory	
 safe!”	

No	
 modificaHon	
 is	

needed	
 (basically)	

Inferring	
 type	
 info.	
 	
 and	

inserHng	
 necessary	

dynamic	
 checks	

AutomaHcally	
 generated	

by	
 TAL	
 assembler	

TAL	
 (=	
 Typed	
 Assembly	
 Language)	

Type-­‐check	
 is	
 possible	
 at	
 the	
 level	
 of	
 assembly/machine	
 languages	

User	

10	

Overview of DEOS Model Checker	

P-­‐Component	

Model	

checker	

Result:	

“This	
 program	
 saHsfies	
 the	

specified	
 property!”	

Property	
 to	

be	
 verified	

Describing	
 properHes	
 to	

be	
 verified	
 as	
 specificaHon	

11	

int pbus_bmtx_extrylock(pbu_bmtx_t *mtx)
 tries to hold a blocking mutex.

/*@ requires context == PBUSV_CTX_PROCESS;
 requires \valid(mtx);
 requires *mtx != PBUSV_UNINITIALIZED;
 assigns *mtxt;
 ensures \result == 0 || \result == EBUSY;
 ensures \result == 0  *mtx == EX_LOCKED;
 ensures \result == EBUSY  *mtx == \old(*mtx);
*/	

Context	
 Process	
 Context	
 only	

May	
 block	
 or	
 not	
 No	

Pre-­‐condiHons	
 mtx	
 must	
 be	
 iniHalized	
 by	

pbus_bmtx_init	

Return	
 value	
 0	
 on	
 success	

	
 EBUSY	
 on	
 failure	

Post-­‐condiHons	
 mtx	
 shall	
 be	
 locked	
 on	
 success,	
 	

otherwise	
 mtx	
 is	
 kept	
 unchanged	

Outline of Talk	

 P-Bus 1.0
 DEOS Verification Tools
 Model Checker
 Type Checker

 Case Study
 Related Work
 Rethinking of Our Approach
 Summary

12	

Linux Kernel	

RI2N P-Component	

  RI2N is a fault-tolerant network developed at University of
Tsukuba.

  The fault-tolerance is implemented with redundant network
devices

  The implementation is independent of development of P-Bus
and DEOS verification tools.

13	

RI2N	

P-Bus	

Network
Interface	

Network
Buffer	

Lock
Primitives

Ethernet
Device 1	

Ethernet
Device 2	

User Application	

Socket API

TCP/UDP

IP

Call Flow	

Data Flow	

Case Study: How many bugs have we found ?	

 Three Bugs
 Two Bugs found by DEOS model checker

 Missing lock release
 Accessing uninitialized timers

 One Bug found by DEOS type checker
 Accessing unallocated memory

14	

Bug 1: Missing lock release (found by DEOS model checker)	

15	

static int ri2n_add_slave(pbus_netif_t *netif,
 pbus_netif_t *slave_netif) {
 struct ri2n_priv_t *priv = anlab_netif_private(netif);
 …
 pbus_net_giant_lock();

 root = priv->chl_list;
 if (root == NULL) {
 priv->chl_list = root =
 pbus_alloc(sizeof(struct ri2n_list),
 PBUS_ALLOC_NOWAIT | PBUS_ALLOC_ZERO);
 if (root == NULL) {
 ri2n_error_msg("pbus_alloc fault\n");
 return 1;
 }
 …	

A	
 lock	
 is	
 acquired	
 here,	

but	
 …	

Forgot	
 to	
 release	
 the	
 lock!	

Bug 2: Accessing unallocated memory (found by DEOS type checker)	

16	

static int ri2n_priv_init(pbus_netif_t *netif) {
 struct ri2n_priv_t *priv = pbus_netif_private(netif);
 …
 pbus_nbmtx_init(&priv->tablock);
 …
}

int ri2n_setup(void) {
 pbus_netif_t *pbus_netif;
 …
 if (0 != pbus_create_netif(
 &ri2n_netif_ops,
 &ri2n_proto_handler,
 &ri2n_netif_param, &pbus_netif)) {
 …
 }
 …
 rval = ri2n_priv_init(pbus_netif);
}

The memory pointed by “priv” has
not been correctly allocated, but it
works because the area has not
been used for other purposes

No valid pointer is
assigned to “priv”!

Bug 3: Accessing uninitialized timers (found by DEOS model checker)	

17	

void ri2n_cleanup(void) {
 …
 pbus_timer_cancel(&ri2n_buf_timer);
 …
}

int ri2n_setup(void) {
 …
 rval = ri2n_priv_init(pbus_netif);
 if (0 != rval) {
 ri2n_error_msg("ri2n_priv Initialize() fault\n");
 ri2n_cleanup();
 return -1;
 }
 …
 pbus_timer_init(&ri2n_buf_timer,
 &ri2n_buf_timer_ops, NULL);
 …
}

A timer is accessed here, but
…

エラーパスではタイマーは	

初期化されていない	

The timer may not be initialized
in error paths!

# of False Positive is 1	

 Locks in memory heap could not be handled correctly by
our model checker	

static void ri2n_buf_timer_fn(pbus_timer_t *timer) {
 …
 for (i = 0; i < RI2N_HASHLEN; i++) {
 …
 do {
 if (ptr->cont != NULL) {
 …
 pbus_nbmtx_exlock(&node->lock);
 …
 pbus_nbmtx_exunlock(&node->lock);
 …
 }
 } while (ptr != root);
 }
 …
}

The	
 lock	
 seems	
 to	
 be	

acquired	
 and	
 released	

correctly	
 …	

It seems that the lock is acquired
and released correctly, but the
current model checker does not
take care of pointer variables

18	

Outline of Talk	

 P-Bus 1.0
 …..

 DEOS Verification Tools
 Model Checker
 Type Checker

 Case Study
 Related Work
 Rethinking of Our Approach
 Summary

19	

Related Work: Model Checking Tools	

  BLAST (Thomas A. Henzinger et al., EPFL)
  Properties reducible to graph

reachability can be verified
  Properties can be specified by users

  State-machine based
specification language

  C source code can be verified directly
  Lazy predicate abstraction approach:

more expensive, less conservative
  SDV (Microsoft)

  Properties reducible to graph
reachability can be verified
  Properties cannot be specified by

users
  C source code can be verified directly

  Predicate abstraction approach: less
expensive, more conservative

  SPIN (Gerard J. Holzmann et al., Bell
Labs ?)
  Properties described in LTL (Linear

Temporal Logic) can be verified
  Properties can be specified by users

  C source code cannot be verified directly
  DEOS Model Checker

  Properties reducible to graph
reachability can be verified
  Properties can be specified by users

  Assertion based specification
language (a dialect of ACSL)

  C source code can be verified directly
  Predicate abstraction approach: less

expensive, more conservative	

20	

Related Work: Type Checking Tools	

  CCured (George Necula et al., UCB)
  Memory safety is ensured through type inference
  A little modification of C source code is (typically) required

  Fail-Safe C (Yutaka Oiwa, AIST)
  Memory safety is ensured by inserting dynamic checks
  No modification is required basically

  Deputy (Jeremy Condit et al., UCB)
  Memory safety + α (invariants about null-terminated pointers etc.) is ensured

through type checking of dependent types and inserting dynamic checks
  Explicit type annotations are required basically

  DEOS Type Checker
  Memory safety is ensured by inserting dynamic checks
  Memory safety of generated assembly code can be verified through type checking
  No modification is required basically

21	

Outline of Talk	

 P-Bus 1.0
 …..

 DEOS Verification Tools
 Model Checker
 Type Checker

 Case Study
 Related Work
 Rethinking of Our Approach
 Summary

22	

Rethinking P-Bus/P-Component (1/2)	

  Original Design Philosophy
  P-Bus APIs define the basic kernel

functions and extension capabilities
  API for extensions

  Device drivers, scheduler, and so on
  The API is different than API for

customization/extension provided
by original Linux

  API for basic kernel operations
  Locking /unlocking semaphore,

sleep/wakeup, and so on

  P-Bus APIs are defined with formal
specification
  A kernel module implemented with

the P-Bus API is called a P-
Component

  A P-Component is validated using
the DEOS verification tools

  Issues in P-Bus 1.0
  It is assumed that all extensions are

described using P-Bus APIs
  This approach is something like

defining the specification of a new
micro kernel inside Linux kernel

  Actual Linux extensions are based on
extension capabilities provided by
Linux kernel with patching
  P-Bus does not assume such a

case
  P-Bus approach is creation of a new

world in the Linux kernel, that might
not be accepted by the Linux
community

23	

Rethinking P-Bus/P-Component (2/2)	

 P-Bus 2.0
  Because the Linux kernel provides APIs for customization/extension, the

specification of those APIs is formally defined
  VFS, network/block/character device interface
  Socket interface
  Netfilter interface
  …

  API for basic operations used by extended modules is formally defined.
This is the same as P-Bus 1.0
  Locking /unlocking semaphore, sleep/wakeup, and so on

24	

Summary	

 P-Bus/P-Component and DEOS type and model checkers
have been introduced

 A result of the case study shown in this presentation
demonstrates that our approach is effective and
contributes safety of OS modules

 However, P-Bus and DEOS verification tools prove limited
correctness of OS modules. Functional properties of OS
modules cannot be validated unlike the seL4 approach

25	

References	

  Yutaka Ishikawa, et.al, "Towards an Open Dependable Operating
System,“ IEEE 12th International Symposium on Object/Component/
Service-Oriented Real-Time Distributed Computing, 2009 (Invited
Paper).

  Toshiyuki Maeda and Akinori Yonezawa, "Writing an OS Kernel in a
Strictly and Statically Typed Language", Lecture Notes in Computer
Science 5458, pp. 181-197, May 2009.

 Motohiko Matsuda (Univ. of Tokyo), Toshiyuki Maeda (Univ. of Tokyo)
and Akinori Yonezawa (Univ. of Tokyo), "Towards Design and
Implementation of Model Checker for System Software", The 1st
International Workshop on Software Technologies for Future
Dependable Distributed Systems (STFSSD 2009), Tokyo, Jan. 2009.

  Takahiro Kosakai, Toshiyuki Maeda and Akinori Yonezawa, "Compiling
C Programs into a Strongly Typed Assembly Language", In Proc. of
ASIAN'07, Lecture Notes in Computer Science 4846, pp. 17-32, Dec.
2007.

  etc.

26	

