
P-Bus and DEOS Verification Tools:
Safe Extension Infrastructure in Linux Kernel	

Yutaka Ishikawa, Hajime Fujita,
Toshiyuki Maeda, Motohiko Matsuda,

University of Tokyo
Shinichi Miura, and Mitsuhisa Sato

University of Tsukuba

1	

An operating system is safe
1)  Because all source codes are reviewed by many engineers, and/or
2)  Because the system has been running for more than ten years without any

troubles

When a new OS function is implemented to be adapted to a new
environment or against some threat, how the OS safety is guaranteed.	

Overview	

 Major Concerns in P-Bus and DEOS Verification Tools
  Operating System is forever modified/upgraded

  To provide a new dependability against some threat or some malfunctions
  To provide a new function required by users
  To run on new computer architectures, e.g., many cores, new devices, …

  Bugs are often injected in a new kernel module [1]

 Approach
  Providing API with formal specification for OS extensions

  A new extension is implemented using the API
  Providing verification tools to check if the new OS modules are correct

 Products
  P-Bus
  DEOS model and type checkers

2	

[1] A. Chou et al., “An Empirical Study of Operating System Error,” In Proc.
18th ACM Symp. Operating System Principles (SOSP) , pp. 73-88, 2001.

Outline of Talk	

 P-Bus 1.0
 DEOS Verification Tools
 Model Checker
 Type Checker

 Case Study
 Related Work
 Rethinking of Our Approach
 Summary

3	

An Overview of P-BUS	

  P-BUS
  Abstraction of Kernel Functions
  API with formal specification for

programming P-Component
  Linux Kernel Module

  P-Component
  implements an additional kernel

function to enhance dependability
  E.g., fault recovery/avoidance

mechanisms, monitoring/
tracing

  implements new device drivers
  runs under the kernel mode

  Not implemented by a user
process such as micro kernels

  is statically verified by DEOS tools

  Linux kernel
  is a minimum Linux kernel

4	

Linux Kernel

P-BUS

Applications	

P-component

robust
network

P-component

Check-
pointing

P-component

Accounting

P-component

Scheduler ・・・
P-component

Fault
detection

DEOS Model and Type Checkers	

CPU&
Scheduler	 Network	Memory

Mgt.	
Process/
Thread	

Interrupt/
Syscall	 ・・・

EOS

SPUMONE (Virtual Machine)	

Linux
Monitoring

•  SPUMONE & EOS
•  monitors the Linux activity to detect malfunctions

and to recover the OS

Linux

P-Bus Design Philosophy	

 Linux	
  APIs for Kernel Extensions

  No documentations
  Programmers misunderstand

how to use APIs provided by
Kernel

  Varying
  Different minor versions may

differ different APIs !

 P-Bus
  Abstraction of Kernel Function
  API with formal specifiation for

programming P-Component

 P-Component
  implements an additional kernel

function to enhance dependability
  implements new device drivers
  is statically verified by DEOS tools

5	

Linux

P-Bus Core	

P-Components

File
System	

Device
Driver	

Kernel
Modules

Scheduler	File
System	

Device
Driver	

An Example of P-Bus Interface and Verification	

6	

Runtime

Build	 System

Development Phase
P-‐Component	 	

P-‐Component	 Binary	

DEOS	 Model	 Checker	
DEOS	 Type	 Checker	

Dynamic
Load	

P-‐Bus	 +	 Linux	 	 Kernel	

Compile	 and	 Link

Verified Certification	

Check	

int pbus_bmtx_extrylock(pbu_bmtx_t *mtx)
 tries to hold a blocking mutex.

/*@ requires context == PBUSV_CTX_PROCESS;
 requires \valid(mtx);
 requires *mtx != PBUSV_UNINITIALIZED;
 assigns *mtxt;
 ensures \result == 0 || \result == EBUSY;
 ensures \result == 0 *mtx == EX_LOCKED;
 ensures \result == EBUSY *mtx == \old(*mtx);
*/	

Context	 Process	 Context	 only	

May	 block	 or	 not	 No	

Pre-‐condiHons	 mtx	 must	 be	 iniHalized	 by	
pbus_bmtx_init	

Return	 value	 0	 on	 success	
	 EBUSY	 on	 failure	

Post-‐condiHons	 mtx	 shall	 be	 locked	 on	 success,	 	
otherwise	 mtx	 is	 kept	 unchanged	

P-Bus: Overhead	

 Extendibility
 Network Driver

  RI2N, high-bandwidth and
fault-tolerant network with
multi-link Ethernet [Miura08]

 Schedulers
  EDF, Earliest Deadline First,

scheduler
  Gang scheduler

  A group of processes , a
parallel job, runs
simultaneously in a multi-
core computer

 Overhead
 Scheduler

  Comparing with the schedule
function

 Fork/exit system call	

7	

Linux 2.6.24.7
Dual Core AMD Opteron Processor 175 (2.2GHz)

+0.09 %	

+0.76 %	

nsec	

Outline of Talk	

 P-Bus 1.0
 DEOS Verification Tools
 Model Checker
 Type Checker

 Case Study
 Related Work
 Rethinking of Our Approach
 Summary

8	

DEOS Type and Model Checkers	

Type checker	 Model Checker	

Target safety
property	

Basic safety
(e.g., memory safety, etc.)	

Advanced safety (e.g., consistency
of locks, correct API usage, etc.)	

Target program	 C source code	
Binary executable	

C source code	

Spec. description	 (almost)Unnecessary	 Necessary
(Describing properties to be
verified as specification, etc.)	

Verification time	 short	 long	

9	

Overview of DEOS Type Checker	

C	 	 source	
code	

Compiler	 to	
TAL	

TAL	
assembly	
code	

TAL	
assembler	

Binary	
executable	

Type	
informaHon	

TAL	 type	
checker	

Result:	
“This	 program	 is	
memory	 safe!”	

No	 modificaHon	 is	
needed	 (basically)	

Inferring	 type	 info.	 	 and	
inserHng	 necessary	
dynamic	 checks	

AutomaHcally	 generated	
by	 TAL	 assembler	

TAL	 (=	 Typed	 Assembly	 Language)	
Type-‐check	 is	 possible	 at	 the	 level	 of	 assembly/machine	 languages	

User	

10	

Overview of DEOS Model Checker	

P-‐Component	

Model	
checker	

Result:	
“This	 program	 saHsfies	 the	

specified	 property!”	

Property	 to	
be	 verified	

Describing	 properHes	 to	
be	 verified	 as	 specificaHon	

11	

int pbus_bmtx_extrylock(pbu_bmtx_t *mtx)
 tries to hold a blocking mutex.

/*@ requires context == PBUSV_CTX_PROCESS;
 requires \valid(mtx);
 requires *mtx != PBUSV_UNINITIALIZED;
 assigns *mtxt;
 ensures \result == 0 || \result == EBUSY;
 ensures \result == 0 *mtx == EX_LOCKED;
 ensures \result == EBUSY *mtx == \old(*mtx);
*/	

Context	 Process	 Context	 only	

May	 block	 or	 not	 No	

Pre-‐condiHons	 mtx	 must	 be	 iniHalized	 by	
pbus_bmtx_init	

Return	 value	 0	 on	 success	
	 EBUSY	 on	 failure	

Post-‐condiHons	 mtx	 shall	 be	 locked	 on	 success,	 	
otherwise	 mtx	 is	 kept	 unchanged	

Outline of Talk	

 P-Bus 1.0
 DEOS Verification Tools
 Model Checker
 Type Checker

 Case Study
 Related Work
 Rethinking of Our Approach
 Summary

12	

Linux Kernel	

RI2N P-Component	

  RI2N is a fault-tolerant network developed at University of
Tsukuba.

  The fault-tolerance is implemented with redundant network
devices

  The implementation is independent of development of P-Bus
and DEOS verification tools.

13	

RI2N	

P-Bus	

Network
Interface	

Network
Buffer	

Lock
Primitives

Ethernet
Device 1	

Ethernet
Device 2	

User Application	

Socket API

TCP/UDP

IP

Call Flow	
Data Flow	

Case Study: How many bugs have we found ?	

 Three Bugs
 Two Bugs found by DEOS model checker

 Missing lock release
 Accessing uninitialized timers

 One Bug found by DEOS type checker
 Accessing unallocated memory

14	

Bug 1: Missing lock release (found by DEOS model checker)	

15	

static int ri2n_add_slave(pbus_netif_t *netif,
 pbus_netif_t *slave_netif) {
 struct ri2n_priv_t *priv = anlab_netif_private(netif);
 …
 pbus_net_giant_lock();

 root = priv->chl_list;
 if (root == NULL) {
 priv->chl_list = root =
 pbus_alloc(sizeof(struct ri2n_list),
 PBUS_ALLOC_NOWAIT | PBUS_ALLOC_ZERO);
 if (root == NULL) {
 ri2n_error_msg("pbus_alloc fault\n");
 return 1;
 }
 …	

A	 lock	 is	 acquired	 here,	
but	 …	

Forgot	 to	 release	 the	 lock!	

Bug 2: Accessing unallocated memory (found by DEOS type checker)	

16	

static int ri2n_priv_init(pbus_netif_t *netif) {
 struct ri2n_priv_t *priv = pbus_netif_private(netif);
 …
 pbus_nbmtx_init(&priv->tablock);
 …
}

int ri2n_setup(void) {
 pbus_netif_t *pbus_netif;
 …
 if (0 != pbus_create_netif(
 &ri2n_netif_ops,
 &ri2n_proto_handler,
 &ri2n_netif_param, &pbus_netif)) {
 …
 }
 …
 rval = ri2n_priv_init(pbus_netif);
}

The memory pointed by “priv” has
not been correctly allocated, but it
works because the area has not
been used for other purposes

No valid pointer is
assigned to “priv”!

Bug 3: Accessing uninitialized timers (found by DEOS model checker)	

17	

void ri2n_cleanup(void) {
 …
 pbus_timer_cancel(&ri2n_buf_timer);
 …
}

int ri2n_setup(void) {
 …
 rval = ri2n_priv_init(pbus_netif);
 if (0 != rval) {
 ri2n_error_msg("ri2n_priv Initialize() fault\n");
 ri2n_cleanup();
 return -1;
 }
 …
 pbus_timer_init(&ri2n_buf_timer,
 &ri2n_buf_timer_ops, NULL);
 …
}

A timer is accessed here, but
…

エラーパスではタイマーは	
初期化されていない	

The timer may not be initialized
in error paths!

# of False Positive is 1	

 Locks in memory heap could not be handled correctly by
our model checker	

static void ri2n_buf_timer_fn(pbus_timer_t *timer) {
 …
 for (i = 0; i < RI2N_HASHLEN; i++) {
 …
 do {
 if (ptr->cont != NULL) {
 …
 pbus_nbmtx_exlock(&node->lock);
 …
 pbus_nbmtx_exunlock(&node->lock);
 …
 }
 } while (ptr != root);
 }
 …
}

The	 lock	 seems	 to	 be	
acquired	 and	 released	

correctly	 …	

It seems that the lock is acquired
and released correctly, but the
current model checker does not
take care of pointer variables

18	

Outline of Talk	

 P-Bus 1.0
 …..

 DEOS Verification Tools
 Model Checker
 Type Checker

 Case Study
 Related Work
 Rethinking of Our Approach
 Summary

19	

Related Work: Model Checking Tools	

  BLAST (Thomas A. Henzinger et al., EPFL)
  Properties reducible to graph

reachability can be verified
  Properties can be specified by users

  State-machine based
specification language

  C source code can be verified directly
  Lazy predicate abstraction approach:

more expensive, less conservative
  SDV (Microsoft)

  Properties reducible to graph
reachability can be verified
  Properties cannot be specified by

users
  C source code can be verified directly

  Predicate abstraction approach: less
expensive, more conservative

  SPIN (Gerard J. Holzmann et al., Bell
Labs ?)
  Properties described in LTL (Linear

Temporal Logic) can be verified
  Properties can be specified by users

  C source code cannot be verified directly
  DEOS Model Checker

  Properties reducible to graph
reachability can be verified
  Properties can be specified by users

  Assertion based specification
language (a dialect of ACSL)

  C source code can be verified directly
  Predicate abstraction approach: less

expensive, more conservative	

20	

Related Work: Type Checking Tools	

  CCured (George Necula et al., UCB)
  Memory safety is ensured through type inference
  A little modification of C source code is (typically) required

  Fail-Safe C (Yutaka Oiwa, AIST)
  Memory safety is ensured by inserting dynamic checks
  No modification is required basically

  Deputy (Jeremy Condit et al., UCB)
  Memory safety + α (invariants about null-terminated pointers etc.) is ensured

through type checking of dependent types and inserting dynamic checks
  Explicit type annotations are required basically

  DEOS Type Checker
  Memory safety is ensured by inserting dynamic checks
  Memory safety of generated assembly code can be verified through type checking
  No modification is required basically

21	

Outline of Talk	

 P-Bus 1.0
 …..

 DEOS Verification Tools
 Model Checker
 Type Checker

 Case Study
 Related Work
 Rethinking of Our Approach
 Summary

22	

Rethinking P-Bus/P-Component (1/2)	

  Original Design Philosophy
  P-Bus APIs define the basic kernel

functions and extension capabilities
  API for extensions

  Device drivers, scheduler, and so on
  The API is different than API for

customization/extension provided
by original Linux

  API for basic kernel operations
  Locking /unlocking semaphore,

sleep/wakeup, and so on

  P-Bus APIs are defined with formal
specification
  A kernel module implemented with

the P-Bus API is called a P-
Component

  A P-Component is validated using
the DEOS verification tools

  Issues in P-Bus 1.0
  It is assumed that all extensions are

described using P-Bus APIs
  This approach is something like

defining the specification of a new
micro kernel inside Linux kernel

  Actual Linux extensions are based on
extension capabilities provided by
Linux kernel with patching
  P-Bus does not assume such a

case
  P-Bus approach is creation of a new

world in the Linux kernel, that might
not be accepted by the Linux
community

23	

Rethinking P-Bus/P-Component (2/2)	

 P-Bus 2.0
  Because the Linux kernel provides APIs for customization/extension, the

specification of those APIs is formally defined
  VFS, network/block/character device interface
  Socket interface
  Netfilter interface
  …

  API for basic operations used by extended modules is formally defined.
This is the same as P-Bus 1.0
  Locking /unlocking semaphore, sleep/wakeup, and so on

24	

Summary	

 P-Bus/P-Component and DEOS type and model checkers
have been introduced

 A result of the case study shown in this presentation
demonstrates that our approach is effective and
contributes safety of OS modules

 However, P-Bus and DEOS verification tools prove limited
correctness of OS modules. Functional properties of OS
modules cannot be validated unlike the seL4 approach

25	

References	

  Yutaka Ishikawa, et.al, "Towards an Open Dependable Operating
System,“ IEEE 12th International Symposium on Object/Component/
Service-Oriented Real-Time Distributed Computing, 2009 (Invited
Paper).

  Toshiyuki Maeda and Akinori Yonezawa, "Writing an OS Kernel in a
Strictly and Statically Typed Language", Lecture Notes in Computer
Science 5458, pp. 181-197, May 2009.

 Motohiko Matsuda (Univ. of Tokyo), Toshiyuki Maeda (Univ. of Tokyo)
and Akinori Yonezawa (Univ. of Tokyo), "Towards Design and
Implementation of Model Checker for System Software", The 1st
International Workshop on Software Technologies for Future
Dependable Distributed Systems (STFSSD 2009), Tokyo, Jan. 2009.

  Takahiro Kosakai, Toshiyuki Maeda and Akinori Yonezawa, "Compiling
C Programs into a Strongly Typed Assembly Language", In Proc. of
ASIAN'07, Lecture Notes in Computer Science 4846, pp. 17-32, Dec.
2007.

  etc.

26	

