TU Wien

The Elimination of a
Monolithic Operating System
in the GENESYS MPSoC Architecture

H.Kopetz
January 2010

Outline

*Introduction

Hardware and OS Trends
*The GENESYS Architecture
*Model of a Component
*Operating System Services
*System Components
*Conclusion

ARTEMIS

In order to meet the future challenges of the
Embedded System industry, such as

+ Economies of Scale of the Semiconductor Industry

+ Convergence of Application Domains (Internet of Things)

+ Dependability (Security, Reliability, Diagnosis)

+ Market Fragmentation
the European ES Industry in cooperation with the EU
and the national authorities have formed the
European technology platform ARTEMIS with the
intent to improve the world-wide competitiveness of
the European ES industry by developing a cross-
domain embedded system architecture.

ARTEMIS Requirements

In a two year effort, following requirements have been
identified for the cross-domain embedded system
architecture by an ARTEMIS expert group:

o Composability

+ Networking and Security

+ Robustness

o Diagnosis and Maintenance

+ Integrated Resource Management

+ Evolvability

+ Self Organization
Detailed requirements on the ARTEMIS website

https://www.artemisia-association.org/downloads/RAPPORT _RDA.pdf

The European FP 7 Project GENESYS

GENESYS was a joint research project that
has developed an architectural framework
for the design and implementation of
cross-domain embedded systems that
meets the ARTEMIS requirements.

Project duration: Jan 2008 - June 2009

The GENESYS Partners (23)

1 (Coordinator) Vienna University of
Technology Austria

2 STM Microelectronics Italy

3 Commissariat a 'Energie Atomique
France

4 Nokia Oyj Finland

S Thalesgroup France

6 Embedded Systems Institute
Netherlands

7 Interuniversitair Micro-Elektronica
Centrum

IMEC Belgium

8 Technical University Darmstadt
Germany

9 European Software Institute ESI-
Tecnalia Spain

10 Technical Research Centre of VI'T
Finland

11 Infineon Germany

12 Centro Ricerche Fiat Italy

13 TTTech Computertechnik AG
Austria

14 University of Bologna Italy

15 Verimag UJF France

16 Fraunhofer IGD FhG Germany
17 TU Miinchen Germany

18 Vytautas Magnus University
Kaunas Lithuania

19 Ikerlan Spain

20 Budapest University of
Technology and

Economics Hungary

21 Universidad Politecnica de
Madrid Spain

22 NXP Semiconductors Netherlands
23 Volvo Technology Sweden

Hardware and OS Trends

The future hardware building block for embedded systems
will be a System-on-Chip, where multiple heterogeneous
IP-Cores (IPC) are interconnected by a Network-on-Chip.
Such an SoC is often called an MPSoC.

D

Why the Move to MPSoCs

Some reasons for moving to MPSoCs:

o Islands of Synchronicity are needed since global
time distribution becomes very costly as we move
to high frequencies.

o+ Power and Energy Concerns: Small physical
structures are more energy efficient and can be
turned off (power gating) if not needed.

o Fault Containment: A large SoC must be
partitioned into independent fault containment
regions that can be restarted dynamically.

+ Design Reuse: Design, Testing and Certification
must move to a higher level of abstraction.

Open Issues

What kinds of IP-Cores?

o Passive Units, like memory, co-processors, |/0
subsystems that must be controlled

+ Active Units, like autonomous computers that
form Fault-Containment Units
Where is the Clock-Domain Crossing?

What type of Communication Infrastructure?

o Best effort with arbitration and intermediate
buffers

+ Guaranteed preplanned service without
contention

Architecture Alternatives

There are two main alternatives to organize an

MPSoc:

o Shared Memory Abstraction (SMA): Each IP-core
has one or more local caches. There exist a global
memory that can be accessed by all IP Cores.
Cache coherence is performed at the hardware
level.

o Distributed System Abstraction (DSA): Each |P-
core has a local scratchpad memory. IP cores
communicate by messages only. There is no
global shared passive memory.

Comparison of SMA and DSA

Characteristic SMA DSA
Flexibility * o %
Cognitive Simplicity * * ok k
Energy Efficiency * kK ok
Real-Time Guarantees * % % %
Fault Containment * * ok %
Legacy Integration % %
Scalability * £ ok
%k %k %k

Certification *

Architectural Style of GENESYS

+ Component Orientation—A component is a
hardware/software unit

+ All components are time-aware—A global time is
provided by the architecture.

+ Separation of Computation from Communication—
Components and Communication systems can be
developed independently.

+ Core Services are Deterministic—Modular
Certification is supported by the architecture.

+ Different Integration Levels—IP-Cores form a Chip,
Chips form a Device, Devices form systems

Complexity Management in GENESYS

The architectural style of GENESYS deploys the following
simplification strategies to reduce the complexity of a design:

¢ Partitioning: The partitioning of a system into nearly
autonomous subsystems (components).--Physical
Structure

o Abstraction: The introduction of abstraction layers
whereby only the relevant properties of a lower layer
are exposed to the upper layer--Structure and Behavior

¢ Isolation: The logical and physical containment of
subsystems, such that errors are confined.

o Segmentation: The temporal decomposition of complex
behavior into small parts that can be processed
sequentially (“step-by-step”)--determinism helps!

What is a GENESYS Component?

+ Hardware/software unit that accepts input messages,
provides a useful service, maintains internal state, and
produces after some elapsed time output messages
containing the results. It is aware of the progression of
physical time

+ Unit of abstraction, the behavior of which is captured in a
high-level concept that is used to capture the services of a
subsystem.

o Fault-Containment-Unit (FCU) that maintains the abstraction
in case of fault occurrence and contains the immediate effects
of a fault (a fault can propagate from a faulty component to a
component that has not been affected by the fault only by
erroneous messages).

+ Unit of restart, replication and reconfiguration in order to
enable the implementation of robustness and fault-tolerance.

The Interfaces of a GENESYS Component

Connection to local sensors, actuators,
man-machine interface, other systems

Local Interface--
to the Environment
(unspecified)

View Inside Control

Technolog Technology . .
For the |DependenfiAEUCNEIEIRTVE Y ndependent| CONfiguration
(remote) | Interface Unit Interface Restart
Maintenance | (TDI) (TN Reset

Power level

Expert

Linking Interface LIF--
Provides the service
to the User

Relevant for the integration of components into a
cluster of components

Example of a Cluster
j \

Driver \ssistan [sateway Host Computer
nterface System Body

Engine

Control VehiC|e tO

Vehicle
Communication

Linking Interface Specification

The Linking interface is a message-based
interface. Its specification consists of three parts:

+ Transport Specification: contains the information
needed to transport a message from the sender to
the receiver. Temporal properties are part of the
transport specification

+ Operational Specification: specifies the syntactic
structure of the bit stream contained in the
message and establishes the message variable
names that point to the concepts at the meta level.

+ Meta-Level Specification: assigns meaning to the
message variable names established by the
operational specification

Meta-Level Specification: Interface Model

+ specifies the relationship between the real world and
the meaning of the message variables.

+ must be expressed with concepts that are familiar to the
conceptual world of the intended users.

+ must include the context of use, i.e. a (constrained)
model of the environment.

+ The brittleness of natural language cannot be avoided in
open components.

+ Meta-level specification remain often informal --
Formalization increases the precision, but at the same
time increases the distance to reality (Chargaff)

+ Beware of pseudo-formalism.

Gateway Components

Gateway components connect the cyber world to the
physical world:

Temperature

T.Luft=0
Sensor

* The representation of the information in the two worlds
will be different, but the semantic content of the
message variables must be the same.

* The meta-level specification of a gateway component

requires knowledge about the context of use.

Gateway Components

Gateway components can also connect two clusters that
may be based on different architectural styles:

Red LIF

* The representation of the information in the two clusters
will be different, but the semantic content of the
message variables must be the same.

Openness: Soft versus Hard Components

Local Interfaces--Open Components
I | | | | I

FPGA
API Block

Operating System and Middleware

|Z|] E, ig & &

The Linking Interface (LIF) of all three different
component implementations should have the same syntax,
timing and semantics. For a user, it should not be
discernible which type of component is behind the LIF
(Technology Agnosticism).

Components are Time Aware: Sparse Time

Whenever we use the term time we mean physical time as defined
by the international standard of time TAI.

If the occurrence of events is restricted to some active intervals on
the timeline with duration st with an interval of silence of duration
A between any two active intervals, then we call the time base t/
A-sparse, or sparse for short, and events that occur during the
active intervals sparse events.

0 1 2 3 4 5 6 7 8 9
LT et et e e er e e e e e e e e e e e e e e e e e v e e e e e e e e

OU'U' OW UUQ_; Time
NN N

| A T A T

Events @ are only allowed to occur at subintervals of the timeline

Component Integration Framework

Cooperation
Time-Triggered
Deterministic

Unidirectional Deterministic Multi-cast Message

¢ Uni-directionality is required to
* decouple communication from computation
* decouple the sender behavior from the receiver behavior

o Determinism is required to
e establish timeliness
* simplify the reasoning about the behavior (modus pones)
* simplify testing (repeatable test cases)
* be able to implement active replication (TMR)
e support the certification

+ Multi-cast is required to support
» the independent observation of the component behavior
* replication of state at multiple components
* Triple Modular Redundancy

Message Types

+ Sporadic Messages (ET) (core)
* characterized by two queues, one at the sender site and
one at the receiver site
* Exactly once semantics
 Normally best effort timing

¢ Periodic Messages (TT) (core)
* No queues, non-consuming read, update in place
 Temporal guarantees

¢ Real-time Data Streams
e Guaranteed bandwidth and timing (core)
* Queues with watermark management (optional)

Openness: Any communication protocol (wire-bound
or wireless) that provides these services can be used

Event-Triggered Communication

Sender = ~1-> Recerver

}*—’] Communication it
= Channel (ET orTT) |= WL .
Sender | 1 =1| Receiver

Queue = _"O)—>[L Queue

In the GENESYS Network-on-Chip, the communication
channel is time-triggered, even for event-triggered
messages. There are no intermediate buffers in the
network—they are at the memory spaces of
the end points.

Temporal Error Containment by the CS

It is impossible to maintain the
communication among the
correct components of a RT-
cluster if the temporal errors
caused by a faulty component
are not contained.

Error containment of an
arbitrary temporal node failure
requires that the
Communication System is a
self-contained FCU that has
temporal information about
the allowed behavior of the
nodes-- it must contain
application-specific state.

Temporal Error
Containment Boundary

- //
Communication
System

Babbling
idiot

Integration: Principles of Composability

(1) Independent Development of the Components
(Architecture)
The interfaces of the components must be precisely specified
in the value domain and in the temporal domain in order that
the component systems can be developed in isolation.

(2) Stability of Prior Services (Component Implementation)
The prior services of the components must be maintained
after the integration and should not fail if a partner fails.

(3) Non-Interfering Interactions (Communication System)
The communication system transporting the messages must
meet the given temporal requirements under all specified
operating conditions.

(4) Preservation of the Component Abstraction in the case of
failures (Architecture) and provision of a communication
system with error containment.

Operating System in GENESYS

In GENESYS the functions of a monolithic
operating system are partitioned into
o A Mini-RTOS in each node, and

+ An open-ended set of autonomous OS Components
that provide operating system services such as

* Device Controllers (Gateway Components)
* Integrated Resource Management

* Security

* Diagnosis and Robustness

* Shared Memory Component

Functions of the Mini OS within a Component

+ Downloading of the component software, the Job,
into the component hardware via the Tll interface.

¢ Communicate with other System Components to
establish ports and dynamic links, to reintegrate
components after a transient fault etc.

+ Global time management

¢ Provision of API Services (e.g., send and receive of a
message)

+ Scheduling of the tasks within a component

¢ Service of the Tll Interface to reset, start, and
terminate the operation of a component

+ Provision of Generic Middleware Services (GEM)

Integration Levels

In Genesys we introduce three integration levels:

+ Chip Level: the components are IP-cores, interconnected
by a NoC (network on Chip) to form a Chip

+ Device Level: the component are chips interconnected by
an inter-chip communication system to form a Device. A
device can be an addressable entity in the Internet and can
have an IP-Address (as well as a chip, if desired).

+ System Level: The components are devices that are
interconnected by a wire-bound or wireless communication
service:

* Closed Systems: System structure is static.

* Open Systems: System structure is dynamic, i.e., devices
can come and go

Chip Level: Why not take the Cell?

Cell Processor GENESYS
Designed to run a single Designed to provide an execution
monolithic application execution environment for nearly
independent jobs.
Decomposition of the Fault Isolation and Error Containment
application into parallel between the jobs executing on

modules is the critical issue. different cores are the critical issues

Asynchronous on-chip Time-triggered deterministic
communication on-chip Communication
Single Distributed Multiple heterogeneous

Operating System Operating Systems (one in each core)

Chip Level: GENESYS Prototype

/ 72
//SV

:. I.,r
' | Local : | Local TTE| ! ! | Local CAN

' | 1O FlexRay Vo Vo

Host Vo Host ‘ol Host

E | 'l | :: I
VRS RED) e

: SS X' SS ' S
://///// A::é/p////:://“///
_:jlc----4--°-----: :-p "

lme-Tri erod

LIS 72

A, ///
Network-on-c

/

222070
5 ////s/::V////////g:%//// ::7/////%:: :
: it 188 i ss/ i1 'nss/:: SS_ i
| /{///%L/{//////E/{/A/////I///////{/A
§ Host § § Host ; § Host : E Host : § Host §
{ | LocallO | i|i | Localo | i} | LocallO | i} | LocalWO | | LocalliO | i
C et o L o B P B I REC Lt 3
3/24/10 FP7 GENESYS 33

Structure of the GENESYS Chip

The GENESYS Chip consists of the Trusted
Subsystem and IP Cores:

o The Trusted Subsystem is formed by the Trusted
Resource Monitor (TRM) and Trusted Interface
Subsystems (TISS) to the components and the
TTNoC.

¢ The IP-cores are connected to the TISSes. The
TISS will contain an arbitrary temporal failure
(harware or software) of a non-trusted IP core

Device-Level: Integration of Chips

LIF

LIF

Chips are linked by intra-device-level LIFs
to form a device.

Viewed from the intra-chip level, the
intra-device level LIF is a local interface
(and vice versa).

The intra-device level LIF carries its own
LIF Specification that comprises all
subsystems that are connected to this
device.

Openness: The open LIF specification
makes it possible to integrate legacy
systems.

System Level: Integration of Devices

Devices are
linked by

System Level
LIFs
We
Device A Device B distinguish
between

+ Open

+ Closed
Systems.

Wirebound or Wireless

TTP and TT-Ethernet

¢ TTP (Time-Triggered Protocol) and TTE
(Time-Triggered Ethernet) have been
developed to link devices of the TTA.

o TTP is very data efficient and operates up to
a bandwidth of 20 Mbits/second.

o TTE is fully compatible with standard
Ethernet and operates up to 1 Gigabit/
second. It has been selected as the standard
protocol for the ORION spacecraft.

Hierarchy of Services

Application Specific Services,
Including Middleware

Domain Specific Services
e.g., AUTOSAR

Optional Services

_ e.g., Message Transport
Core Services

Clock Synchronization
Reconfiguration
Robustness

Different
Implementation Choices

Core Services at the Chip Level

The core services are provided by the trusted
subsystem at the chip level

+ Platform Configuration Service—boot service to
generate components by binding software (job)
with IP core hardware

o Channel Configuration Service—establishes the
ports and channels among IP cores

o Clock Synchronization Services—global time

o Execution Service—control the execution of IP
Cores (start, terminate, reset)

o Communication Service—provides the capability
to send and receive messages.

Examples of Optional OS Services

Optional OS Service are implemented by self-
contained System Components in cooperation
with the GEM (Generic Middleware) within a
component:

o External Memory Management

¢ Security

+ Diagnostics and Robustness

+ Integrated Resource Management (scheduling)

+ Standard Internet Connection

Abstraction: Model Driven Design

Domain Specific Application Model
(e.g., expressed in UML)

Platform

Platform Independent Model (PIM)
expressed in a High-Level Language
(e.qg., System C).

N\ /\

Independent
Model(PIM) focuses
on functionality and
time

Platform
Specific
Model
(PSM)

System Components can be Hard

An OS component, that has reached a high level
of stability, can be implemented in hardware:

¢ Reduction of t
factor of one t

¢ Reduction of t

ne power requirement by a
nousand and more

ne silicon real-estate

¢ Standardization by hardware

An OS component maps ideally into an IP-core
of a multiprocessor-system-on-chip (MPSoC)

Performance Trends--Power
Gops/Watt

100

110: / /
/

L o// CPU

0 / / Cell

0.01 / |

i i i —
1990 1995 2000 2005 2010

Ref: Lauwereins, Imec, MSOP 2006

Conclusion

In GENESYS the operating system functions are

partitioned, isolated, and distributed:

o All architectural Services, except the core
services at the chip level (level 1), are provided
by self-contained system components that
interact by messages with the generic
middleware (GEM) in the components.

¢ Each component can have a small (possibly
heterogeneous) local operating system that is
not visible at the architectural level
In GENESYS there is no need for a large
monolithic operating system

