Improving OS safety using the
. Coccinelle Program Matching and
/Cf‘TransformaTion Tool

Gilles Muller (INRIA/LIP6),
Julia Lawall (DIKU),

Jesper Andersen, Julien Brunel, René
Rydhof Hansen, Yoann Padioleau, and
Nicolas Palix

http://coccinelle.lip6.fr

_4&- 1he problem: Dealing with Systems
Code

N

e

\

s It's huge
= It's configuration polymorph
= It's (unfortunately) buggy

s It's often written in C

= It evolves continuously

ek
“Of Two Examples

s Bug finding (and fixing)
= Search for patterns of wrong code
= Systematically fix found wrong code

s Collateral evolutions

= Evolution in a library interface entails lots
of Collateral Evolutions in clients

= Search for patterns of interaction with the
library

= Systematically transform the interaction code

b
“Of The Coccinelle tool

= Program ma’rching and transformation for
unpreprocessed C code.

s Fits with the existing habits of Systems
(Linux) programmers.

» Semantic Patch Language (SmPL):
= Based on the syntax of patches,
= Declarative approach to transformation

= High level search that abstracts away from
irrelevant details

= A single small semam‘icFaTch can modify hundreds
of files, at thousands of code sites

_ Using SmPL to abstract away from
“Ok irrelevant details

=
)

= Differences in spacing, indentation, and
comments

= Choice of the names given to variables
(metavariables)

s Irrelevant code (‘... ', control flow oriented)

= Other variations in coding style
(isomorphisms)

e.g. if(ly) = if(y==NULL)

if(NULL==y)

Y

~ b
Of‘
uf N

\—

= The "1&" bug

C allows mixing booleans and bit constants

Bug finding and fixing

if (Istate->card->
ac97_status & CENTER_LFE_ON)
val &= ~DSP_BIND_CENTER_LFE;

In sound/oss/ali5455.c until Linux 2.6.18
(problem is over two lines)

(:0? A Simple SmPL Sample

@@
expression E;
constant C;

@@

-IE&C // \C is not a constant
+1(E & C)

96 instances in Linux from 2.6.13 (August 2005) to v2.6.28
(December 2008)

58 in 2.6.20 (February 2007),
2 in Linux-next (19th September 2009)

~ Collateral Evolutions

lib.c

Evolution int foo(int x X
becomes

int bar(int X, int y

before
Legend: after
Collateral Evolutions (CE) in clients clientn.c
clientl.c client2.c | |
foo(1); foo(foo(2));
bar(1,?); bar(bar(2,?),?);
f00(2): fifood) {
bar(2,?); if(bar(3,?) {

e
“Of CE in Linux device drivers

= Many libraries and many clients:

= Lots of driver support libraries: one per device
type, one per bus (pci library, sound library, ...

= Lots of device specific code: Drivers make up more
than 50% of Linux
= Many evolutions and collateral evolutions

1200 evolutions in 2.6, some affecting 400 files, at
over 1000 sites [EuroSys 2006] (summer 2005)

= Taxonomy of evolutions :

Add argument, split data structure, getter and setter
introduction, protocol change, change return type,
add error checking, ...

 Example from Linux 2.5.71

= Evolution: scsi_get()/scsi_put() dropped from SCSI library

= Collateral evolutions: SCSI resource now passed directly to
proc_info callback functions via a new parameter

int a_proc_info(int x . arameter
,SCSI_*y —F

scsi *y: A Delete calls

to library

y = scsi_get();

. Delete error
if(ly) { ... return -1; } /checking

.. code
scsi_put(y);

before
} Legend: after

ek
ﬂ_‘} Semantic Patch

@@
a_proc_info;
X, Y,
@@
Int a_proc_info(int X
+ ,SCSI ™y
)1
Scsi_*y;
y = scsi_get();
if(ly) { ... return -1; }
scsi_put(y);
}

drivers/scsi/53¢c700.c

Affected Linux driver code

drivers/scsi/pcmcia/nsp_cs.c

int s53c700 _info(int limit)
{
char *buf;
SCSI *sc;
sc= scsi_get ();
if(!sc) {
printk(“error™);
return -1;
}
wd7000_setup(sc);
PRINTP(*val=%d",
sc->field+limit);
scsi_put (sc);
return O;

int nsp_proc_info(int lim)

{
scsi *host;
host = scsi_get ();
if("host) {
printk(*nsp_error”);
return -1;
}

SPRINTF(“NINJASCSI=%d",
host->base);

scsi_put (host);

return O;

Similar, but not identical

Applying the semantic patch

int s53c700_info(int limit)
{
char *buf;
SCSi *sc;
sc= scsi_get ();
if(!sc) {
printk(“error”);
return -1;
}
wd7000_setup(sc);
PRINTP(“val=%d",
sc->field+limit);
scsi_put (sc);
return O;

}

int nsp_proc_info(int lim)

{
scsi *host;
host= scsi_get ();
if(host) {
printk(“nsp_error”);
return -1,
}

SPRINTF(“NINJASCSI=%d",
host->base);

scsi_put (host);

return O;

proc info.sp

ee
a_proc_i nf o;
X, Y,
ee
int a_proc_info(int x
+ ,Scsi *
)
scsi * vy,
y = scsi_get();

if" y){..return-1;}

éési_put(y);

y

$ spatch —sp file proc_info.sp

—dir linux-next

Applying the semantic patch

int s53c700_info(int limit ,SCsi *sc) =
{ - T >
char *buf: !{nt nsp_proc_info(int lim , SCSi *host)
wd7000_setup(sc); x — o
PRINTP(“val=%d”, SPRINTH(Nr:sst/fb(;?e)%d '
sc->field+limit); '
T 6 ; return O;
}
proc_info.sp
@@ . .
TR . $ spatch —sp_file proc_info.sp
oo 4 —dir linux-next
int a_proc_info(int x
+ ,Scsi * y
|){
scsi * vy,
y = scsi_get();

if y){..return-1;}

éési_put(y);

e
“Of Another example
o évolufion: A new function: kzalloc

= Collateral evolution: Merge kmalloc and memset into
kzalloc

fh = kmalloc(sizeof(struct zoran_fh), GFP_KERNEL);
if (Ifh) {
dprintk(1,
KERN_ERR
"%s: zoran_open(): allocation of zoran_fh failed\n",
ZR_DEVNAME(zr));
return -ENOMEM;
}

memset(fh, O, sizeof(struct zoran_fh));

b
“Of Another example

= Evolution: A new function: kzalloc

= Collateral evolution: Merge kmalloc and memset into
kzalloc

fh = kzalloc(sizeof(struct zoran_fh), GFP_KERNEL);
if (Ifh) {
dprintk(1,
KERN_ERR
"%s: zoran_open(): allocation of zoran_fh failed\n",
ZR_DEVNAME(zr));
return -ENOMEM;

}

“Cf‘ Constructing the semantic patch

= Eliminate irrelevant code

fh = kmalloc(sizeof(struct zoran_fh), GFP_KERNEL);

memset(fh, O, sizeof(struct zoran_fh));

“(:‘}:/ Constructing the semantic patch

s Describe transformations

- th = kmalloc(sizeof(struct zoran_fh), GFP_KERNEL);
+ th = kzalloc(sizeof(struct zoran_fh), GFP_KERNEL);

- memset(fh, O, sizeof(struct zoran_fh));

(:‘? Constructing the semantic patch

s Abstract over subterms

@@

expression X;
expression E1,E2;
@@

- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);

- memset(x, O, E1);

“CE Constructing the semantic patch

s Refinement
@@
expression X;
expression E1,E2;E3;
identifier f;
statement S;
@@
- x = kmalloc(E1,E2);
+ X = kzalloc(E1,E2);
..when!l= (f(...x,..) | <+.x.+>=E3)

- memset(x, O, E1);

0 Constructing the semantic patch

s Generalization
@@

expression X;
expression E1,E2;E3;
identifier f;
Statement S;

type T,T2;

@@

- x = (T) kmalloc(E1,E2);
+ x = kzalloc(E1,E2);
~whenl= (f(..x,.) | <+.x.+=E3)
when I= (while(...) S | for(...;.......) S)
: memse’r((TZ)x 0, E1);

N |
{é; How does the Coccinelle tool work?

Coo

L
“‘f Transformation engine

Parse C file Parse Semantic Patch
l
l Expand isomorphisms
Translate to CFG Translate to CTL

\ /
Match CTL against CFG using
a model checking algorithm

v
Modify matched code

v

Unparse

). Other issues

= Need to produce readable code
= Keep space, indentation, comments

= Keep CPP instructions as-is. Also programmer may
want to transform some #define,/terator macros
(e.g. list_for_each)

Very different from most other C tools

= Interactive engine, partial match

= Implementation of isomorphisms
= Rewriting the Semantic patch (not the C code),
= Generate disjunctions

60 000 lines of OCaml code

Evaluation on Collateral Evolutions
[Eurosys 2008]

ik
“Of Experiments

= Methodology

= Detect past collateral evolutions in Linux 2.5 and
2.6 using the patchparse tool [Eurosys'06]

= Select representative ones
= Test suite of over 60 CEs

= Study them and write corresponding semantic
patches

= Note: we are not kernel developers

= Going "back to the future". Compare:
= what Linux programers did manually
= What Coccinelle, given our SPs, does automatically

e
*\0} Test suite

= 20 Complex CEs : bugs introduced by the
programmers
= Ineach case 1-16 errors + misses

s 23 Mega CEs : affect over 100 sites on Linux between
2.6.12 and 2.6.20

= 22-1124 files affected
= Up to 39 human errors
= Up to 40 people for up to two years

s 26 CEs for the bluetooth directory update from
2.6.12 t0 2.6.20

= Median case

More than 5800 driver files

s
JO\» Results

= SP are on average 106 lines long (6-369)

s SPs often 100 times smaller than "human-
made” patches. A measure of time saved:
= Not doing manually the CE on all the drivers
= Not reading and reviewing big patches, for people
with drivers outside source free

s Correct and complete automated evolutions
for 93% of the files

= Problems on the remaining 7%: We miss code sites

= CPP issues, lack of isomorphisms (data-flow and inter-
procedural)

= We are not kernel developers ... don't know how to specify
= Average processing time of 0.7s per file

Sometimes the tool was right and the human wrong

e
“Of Impact on the Linux kernel

= Collateral evolution related SPs
= Over 11 semantic patches
= Over 52 patches

= SPs for bug-fixing and bad
programming practices

= Over 57 semantic patches
= Over 148+20 patches

>> 400 patches in total

_4 Current/Future Work
"1_0‘» Coccinelle /in the /large

= Protocol-based bug detection in Linux
[DSN2009]

= Management of conflicts between Linux
kernel and services (detection, solving)

= Version consistency

= Collaborative design of rules
= Rule ranking
= Collaborative refinements

@' Conclusion

= SmPL: a declarative language for
program matching and transformation

= Looks like a patch; fits with Systems
(Linux) programmers’ habits

= Quite "easy” to learn; already accepted
by the Linux community

= A transformation engine based on model
checking technology

\

A
“05 Questions?

CocciCheck your code, it's free....
http://coccinelle.lip6.fr

Why Coccinelle ?

A Coccinelle (ladybug) is a bug that eats
smaller bugs

@ Kill bugs before they hateh!

\

N
COCCINELLE

Collateral Evolutions in Linux patches
(summer 2005)

10000
8000+

6000~

lines

oL L
2.2. 2.3,

30+

10

Sites and files affected by a collateral
evolution

400+
@
& _
E 300
= _
=200
(="]
£ 100-
= _
0- Library Device-specific Data structures Protocol
functions functions
1000- == Max Linux 2.2
m | -
= Max Linux 2.3
=Ty
g 800+ w= Max Linux 2.4
ﬁ 600- Max L}nux 2.5
o _ == Max Linux 2.6
E‘. 400- = Average Linux
$
= 200-
m -
0-

Library Device-specific ~ Data structures Protocol
functions functions

{05 Computational Tree Logic (CTL)

= CTL formula =~ regexp on tree
= pq,r, true, false, A, v, =i as in
propositional logic
= X! next node
= A[fUgl,E[fUg]: forall/exist f until g

= Our CFG-oriented approach requires a
formalism that works on graphs

= Has been essential in prototyping

il
1‘} Example

C file Semantic patch
f(1); f(X);
if(exp) 9(3);
else g(4); ~ q(Y):
\ + g(X,Y),
CFG CTL /

OX. f(X); A& AX Aftrue U

9Y. 9v. g (-Y") -; ~*a(X V)
match vi :
T Withess tree

Formula matches model at node 1 with witness tree:

[| X—>1
« Y->3,v->(n3,0 (YY) e0xY
= Y->4, v->(nd, g(Y);re0xXN Yy

). CTL and Model checking

= Model checking a CTL formula against a model
answers just yes/no (with counter example).

= We do program transformations, not just
“pattern checking”. 26

= Bind metavariables and remember their value
= Remember where we have matched sub-formulas

= We have extended CTL : existential variables
and program transformation annotations

e
“”Ok Dissemination through patch
5 ﬂloca‘rion

riginal
@@ -246,7 +246,8 PR — ~_fi
- Int wd /000 _InTto(Int X) { "plus” line
+ Int wd /000 _Info(int X, ScsI V) { _‘4(; >
] P

Z=X+1;

Y /fminus" IineD
If(ty) {

kprintf(“error”); = Result of

_ diff —u old.c
- return -1;
1 new.c
kprintf(“val = %d”, y->field + z); = Specifictoa
- scsi_put(y); single file, to a
return O; code site

J = Line-oriented

