
Neeraj Suri

Dept. of Computer Science

On Evaluating OS DependabilityOn Evaluating OS Dependability
The Fun (& Science ...) of Experimental Approaches ...

Dept. of Computer Science
TU Darmstadt, Germany

suri@informatik.tu-darmstadt.de

DEEDS: Dependable Embedded Systems & SW Group DEEDS: Dependable Embedded Systems & SW Group
www.deeds.informatik.tuwww.deeds.informatik.tu--darmstadt.dedarmstadt.de

Failure is not an option; it comes with the software!

IFIP WG 10.4 Ishigaki

Talk Outline

� Why are experimental techniques useful for OS evaluation?

� Where to focus in the OS’s?

� How to meaningfully use Fault Injection (FI) based
experimentation to detect as many OS kernel robustness
vulnerabilities as possible!
� Where to inject� Where to inject

� What to inject

� When to inject

IFIP WG 10.4 Ishigaki

Why Experiment? What makes analyzing OS’s hard?Why Experiment? What makes analyzing OS’s hard?

Operating System ~ SLOC

Windows NT 3.1 6M

Windows NT 3.5 10M

Windows NT 4.0 16M

Windows 2000 29M

Operating System ~ SLOC

Red Hat Linux 6.2 17M

Red Hat Linux 7.1 30M

Debian Gnu/Linux 4.0 283MWindows 2000 29M

Windows XP 40M

Windows Vista 50+M

Debian Gnu/Linux 4.0 283M

Sun Solaris 9.7M

Mac OS X 10.4 86M

Linux Kernel 2.6.32 12.6M

There are two ways of constructing a software
design. One way is to make it so simple that there
are obviously no deficiencies. And the other way is
to make it so complicated that there are no obvious
deficiencies. (C.A.R. Hoare)

The amount of damage one human being can do
doubles every 18 months. (1st Corollary of Moore's Law)

IFIP WG 10.4 Ishigaki

OS Issues: EvaluationOS Issues: Evaluation

What limits analytical approaches?

� Size & Complexity
– every line of code? all program

paths?

– all transitions and states?

� Leaky SW (code, module, interface)

� Services/Applications variety

� Dynamic nature of interactions

Operational

State Space

� Dynamic nature of interactions

� Load/Environment

� Lets just focus on data errors to
start…!

� No/Limited source code availability!
Total State Space

Testing

IFIP WG 10.4 Ishigaki

…what OS failures dominate?…what OS failures dominate?

IFIP WG 10.4 Ishigaki

– Numerous: ~26K Ecosystem; 250
installed (100 active) in XP/Vista

– Immature: 25 new/100 “daily” revisions
on Vista drivers

– Large & complex: 70% of Linux code
base, Video drivers up to 2M LoC

Win XP

…the kernel is often …the kernel is often not the (big) not the (big) problemproblem

base, Video drivers up to 2M LoC

– Access Rights: drivers often use kernel
mode operations…

– WDM/WDK interface compliance but
limited source code details known…

Win 2000

IFIP WG 10.4 Ishigaki

Driver Effects on OS Services (Dynamic Apps)Driver Effects on OS Services (Dynamic Apps)

Apps

OS

Drivers

kd

js

APP1 APPN

...

...

...

js

APP1 APPN...

�Which triggers affect
which service? Permeability

�Which service is most Drivers

Driver X

dsx.1 … dsx.mosx.1 … osx.n

Hardware

Exported Imported
......

kd

js

APP1 APPN

...

...

...
kd

�Which service is most
exposed? Exposure

�Which driver spreads the
most errors? Diffusion

IFIP WG 10.4 Ishigaki

• BUT

– Are we injecting at the right place?
Where to inject [DSN 05/07]

– Did we choose the right injection model? GIGO!
What to inject What to inject [DSN 05/07; TOC 04]

– Are we injecting at the right time?
When to inject [ISSRE 07]

IFIP WG 10.4 Ishigaki

IFIP WG 10.4 Ishigaki

Objective 1: “Where/What Objective 1: “Where/What to Inject?”to Inject?”

• FI’s effectiveness based on the chosen fault model being:
(a) representative of actual perturbations, and (b) effective triggers

• Comparative evaluation of “effectiveness” of different injection
models.

IFIP WG 10.4 Ishigaki

FaultFault--Injection: Fault Models, Failure ClassesInjection: Fault Models, Failure Classes

Driver X

dsx.1 … dsx.mosx.1 … osx.n

Exported Imported

Applications

OS

Drivers

• Injection Models

– Data Type (DT)

– Bit Flip (BF)

– Fuzzing (FZ)

– SEU (bit flips – code mutations)

Driver X

HW

IFIP WG 10.4 Ishigaki

Failure Class Description

No Failure No observable effect

Class 1
Error propagated, but still satisfied the OS
service specification

Class 2
Error propagated and violated the service
specification

Class 3 The OS hung or crashed

Models: DataModels: Data--Type Type (DT(DT), Bit Flip (BF),), Bit Flip (BF), FuzzingFuzzing (FZ)(FZ)

DT

int foo(int a, int b) {…}

foo(0x80000000,…

foo(0x45a209f1,…

BF

int foo(int a, int b) {…}

FZ

int foo(int a, int b) {…}

foo(0x45a209f1,…

..001000001001

..001010001001

foo(0x45a289f1,… foo(0x17af34c2,…

foo(0x45a209f1,…

•• #boundary cases #boundary cases
depending on data type depending on data type
((intint, char, , char, booleanboolean, …), …)

•• CC--types: types: intint (long, short…)(long, short…)

•• Requires tracking of the Requires tracking of the
types for correct injectiontypes for correct injection

•• Complex implementation Complex implementation
but scales but scales

•• Typically 32 cases per Typically 32 cases per
parameterparameter

•• Tedious … but can be Tedious … but can be
mechanizedmechanized

foo(0x45a289f1,… foo(0x17af34c2,…

•• Selective # of cases Selective # of cases ––
uniform dist. across uniform dist. across
parameter rangeparameter range

•• Simple implementationSimple implementation

IFIP WG 10.4 Ishigaki

Target Target Drivers Drivers

Driver Description

cerfio_serial Serial port

91C111 Ethernet

atadisk CompactFlash

Compare Injection Models on:

• Number of failures

• Effectiveness

• Experimentation Time

• Identifying services

• Error propagation

IFIP WG 10.4 Ishigaki

Comparative EffortComparative Effort

Driver Description
#Injection cases

DT BF FZ

cerfio_serial Serial port 397 2362 1410

91C111 Ethernet 255 1722 1050

IFIP WG 10.4 Ishigaki

atadisk CompactFlash 294 1658 1035

Failure Failure Classes Triggering (Win CE.NET)Classes Triggering (Win CE.NET)

Class 3

Class 2

Class 1

No failure

40%

60%

80%

100%
atadisk91C111cerfio_serial (Flash)(Ethernet)

Drivers DT BF FZ

cerfio_serial 1.50 1.05 1.56

91C111 0.73 0.98 0.69

atadisk 0.63 1.86 0.29

Driver Diffusion (Class 3)

0%

20%

BFDT FZBFDT FZBFDT FZ

js

APP1 APPN

...

...

...
kd

Which Driver Spreads Errors

IFIP WG 10.4 Ishigaki

Experimentation TimeExperimentation Time

Driver Injection Model

Exec.
time

h min

cerfio_serial

DT 5 15

BF 38 14

FZ 20 44

91C111
Ethernet

DT 1 56

BF 17 20

FZ 7 48

Atadisk Flash

DT 2 56

BF 20 51

FZ 11 55

IFIP WG 10.4 Ishigaki

1) BF Profile: Sensitivity (& Effort) w.r.t 1) BF Profile: Sensitivity (& Effort) w.r.t Bit Position?Bit Position?

0

2

4

6

8

10

024681012141618202224262830

#
S

er
v
ic

es

[LSB][MSB] 024681012141618202224262830
Bit position

[LSB][MSB]

0
2
4
6
8
10
12
14
16
18

024681012141618202224262830

#S
er

vi
ce

s

Bit position

Cumulative #services identified

IFIP WG 10.4 Ishigaki

2) Fuzzing Diffusion 2) Fuzzing Diffusion –– Senstivity w.r.t # Injections?Senstivity w.r.t # Injections?

91111C

cerfio_serial

1.2

1.0

1.4

1.6

1.8

2.0

D
if

fu
si

o
n

(Ethernet)91111C

atadisk

0.2

0.4

0.6

0.8

D
if

fu
si

o
n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#Injections

(Ethernet)

(Flash)

IFIP WG 10.4 Ishigaki

3) Sensitivity 3) Sensitivity w.r.tw.r.t Identifying Identifying Services (Class 3 + Services (Class 3 + 22))

• Which OS services can
cause Class 3+2 failures?

• Which fault model
identifies most services
(coverage)?

Service DT BF FZ

1 O X O

2 X X O

3 X O

4 X X

5 X

6 X X

7 X X O

8 X X

• Is some model
consistently
better/worse?

• Can we combine models?

9 X X X

10 X X X

11 X X X

12 O X

13 X

14 X X X

15 X

16 X X X

17 X

18 X

IFIP WG 10.4 Ishigaki

Composite Composite Fault Model (CM)Fault Model (CM)

• Let’s take the best of BF and FZ models

– Selective BF: Bits 0-9 and 31

– Limited FZ: 10 injection cases

2500

3500

o
n

s All BF & FZ

•• ~50% fewer injections~50% fewer injections

•• Identifies the same service setIdentifies the same service set

500

1500

cerfio_serial

91C111

atadisk

#
In

je
ct

io
n

Composite

IFIP WG 10.4 Ishigaki

Composite Composite Fault Fault Model Model –– Results (Win CE.NET)Results (Win CE.NET)

atadisk91C111cerfio_serial

Class 3

Class 2
60%

80%

100%

%
 o

f
al

l
in

je
ct

io
n

s

(Ethernet) (Flash)

B
F

D
T FZ

C
MB
F

D
T FZ

C
MB
F

D
T FZ

C
M

Class 1

No failure

0%

20%

40%

%
 o

f
al

l
in

je
ct

io
n

s

IFIP WG 10.4 Ishigaki

Injecting SEU‘s “into“ DriversInjecting SEU‘s “into“ Drivers

IFIP WG 10.4 Ishigaki

SEU: Control often not returned to calling kernel component – error prop. by
direct kernel space mem. corruption with driver running in kernel mode – no interface errors

Comparing Across Established Models and CMComparing Across Established Models and CM

• Comparison metrics
– Coverage: how many vulnerable services can a model identify?

– Implementation complexity: input cases and output analysis

– Injection efficiency: how good are models at provoking failures?

– Execution time

IFIP WG 10.4 Ishigaki

CM **** *** *** **

IFIP WG 10.4 Ishigaki

Where, What & Where, What & WhenWhen to Inject: The Timing Basisto Inject: The Timing Basis

• Target: interface OS-Driver

• Application � service(s) request

• Each service =‘s many driver calls

• Each call is a potential injection

• Problem: too many calls

– First-occurrence + timeouts– First-occurrence + timeouts

– Sample (uniform?)

Service invocations

IFIP WG 10.4 Ishigaki

Calls String/Calls Blocks Basis Calls String/Calls Blocks Basis

• Execute workload [Selected: Serial and Ethernet Drivers]

– Record calls string specific to each driver “service req.” a,b,c…

Services Call String: ababcdabdab

• Track repeating call blocks (subsequence of call strings)

– Select service targets (1 per call block) ab ab c d ab d ab

• Identify call block triggers (ab) {2} c d (ab) d (ab); do injection

IFIP WG 10.4 Ishigaki

Classical FO injection

Call Blocks and Driver Phases (BF, Win CE.NET)Call Blocks and Driver Phases (BF, Win CE.NET)

• Call string: D02775(747){23}732775(747){23}23

Init Operational Clean up

Serial Driver

(Max OS interactions)

Serial Driver

Ethernet

IFIP WG 10.4 Ishigaki

Driver ProfilesDriver Profiles

• Driver invocation patterns differ

• Impact of call block injection efficiency

Serial Ethernet

Most OS interactions in
initialization phase

IFIP WG 10.4 Ishigaki

Serial Driver Service IdentificationSerial Driver Service Identification

FO δ α β1 γ1 ω1 β2 γ2 ω2

CreateThread x x x

DisableThreadLibraryCalls x x

EventModify x x

FreeLibrary x x

HalTranslateBusAddress x

InitializeCriticalSection x

w. timeouts

InitializeCriticalSection x

InterlockedDecrement x

LoadLibrary x x

LocalAlloc x x

memcpy x x x

memset x x x

SetProcPermissions x x x

TransBusAddrToStatic x

IFIP WG 10.4 Ishigaki

Serial Driver ResultsSerial Driver Results

IFIP WG 10.4 Ishigaki

Ethernet Driver ResultsEthernet Driver Results

Trigger
Serial Ethernet

#Injections #C3 #Injections #C3

First Occ. 2436 8 1820 12

Call Blocks 8408 13 2356 12

IFIP WG 10.4 Ishigaki

Timing Approach SummaryTiming Approach Summary

• Where, What & When?

• New call string/calls blocks timing model for interface FI

–– Often significant difference to FOOften significant difference to FO
•• More injections (FO: 2436 vs. 8408) More injections (FO: 2436 vs. 8408)

•• BUT injections for specific/full coverage of servicesBUT injections for specific/full coverage of services

–– Initialization and Clean up phases are most effective triggers Initialization and Clean up phases are most effective triggers –– Initialization and Clean up phases are most effective triggers Initialization and Clean up phases are most effective triggers
based on higher OS interactionsbased on higher OS interactions

–– Driver dependent with driver preDriver dependent with driver pre--profilingprofiling

–– Concurrent access (by Concurrent access (by svcssvcs) to call strings: open issue) to call strings: open issue

IFIP WG 10.4 Ishigaki

So what did the experimental approach buy us?So what did the experimental approach buy us?

• Selective fault models

• Workload handling, dynamic app interactions

• Profiling for bits/data flows; hotspots & calls

• Better quantification basis

• Better granularity service identification

as basis for design improvements
XP

• Guidance to analysis!!!
– Experimentation provides useful trends

with caution not to over-generalize

IFIP WG 10.4 Ishigaki

Ongoing IssuesOngoing Issues

• What, When, Where to inject?
– Where: to apply change (location, abstraction/system level)

– What: to inject (what should be injected/corrupted?)

– Which: trigger to use (event, instruction, timeout, exception?)

– When: to inject (corresponding to type of fault)

– How: often to inject (corresponding to type of fault)

– …– …

• Correlations? Sequences? Timings?

• Reproducibility

• Generalization across driver classes

• Automation

• Does having source code actually help?

IFIP WG 10.4 Ishigaki

