

Emergent Connectors for

Eternal Software Intensive Networked Systems

An Introduction to CONNECT: Emergent Connectors for Eternal Software Intensive Networked Systems

Felicita Di Giandomenico, ISTI-CNR 25 Jan 2010

IFIP WG10.4, Ishigaki

THALES

LANCASTER

docomo

Universita

dell'Aquil

technische universität

OXFORD

UNIVERSITE

The CONNECT Project

FP7 Theme:

- ICT-2007.8.6,
- FET Proactive 6: ICT Forever Yours

Budget:

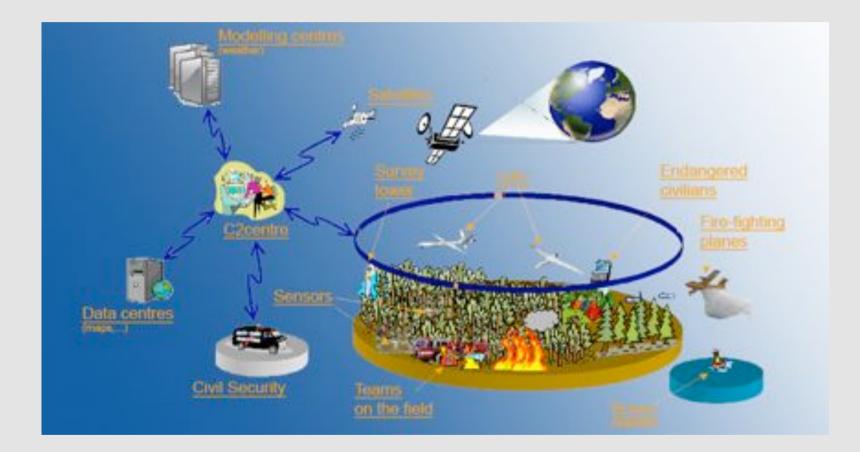
• Total cost: 6.5 M€ - EC contribution: 4.8 M€

Starting date:

- 02/01/2009
- Duration:
 - 42 months

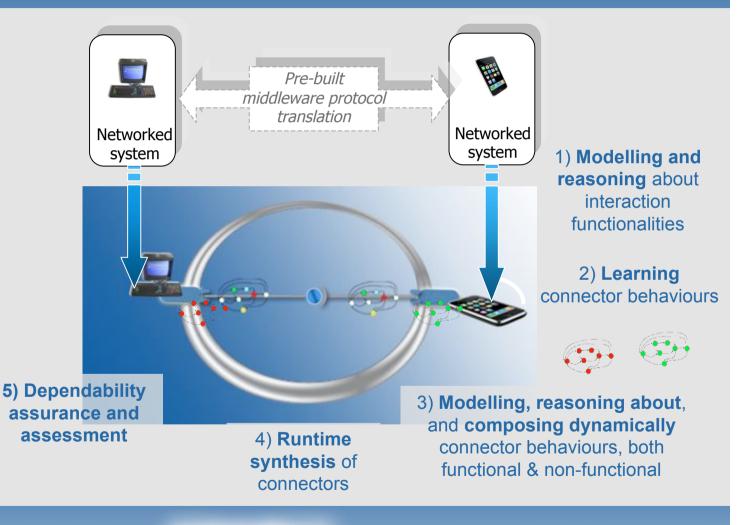
The CONNECT Consortium

Project coordinator: Valérie Issarny, INRIA


CONNECT Research Overcoming the Interoperability Challenge

- Pervasive computing environment that calls for the dynamic connection of devices
 - Pervasive computing devices & networks
- Increasing heterogeneity of the networked computing devices
 - From tiny-scale sensors/actuators to grid computing

A Motivating Scenario Global Monitoring for Environment & Security

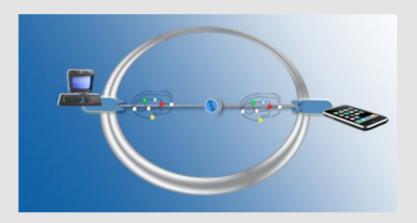

CONNECT Objective & Supporting Methodology A run-time model-centric approach to eternal interoperability

From Non-CONNECTed

Pre-built connectors at syntactic level

To CONNECTed

Emergent connectors at semantic level for eternal connectivity



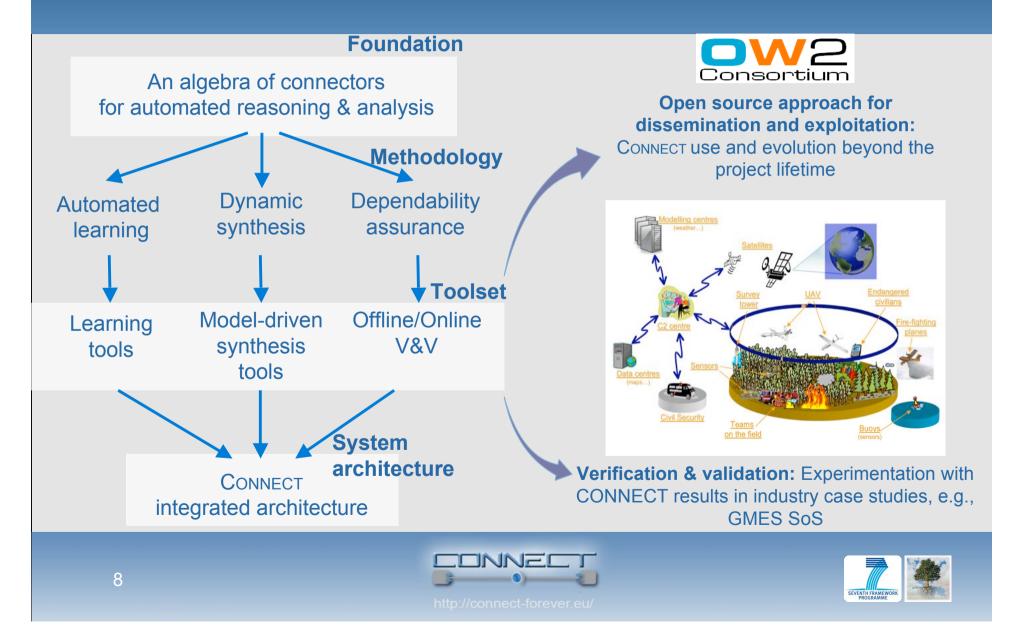
6

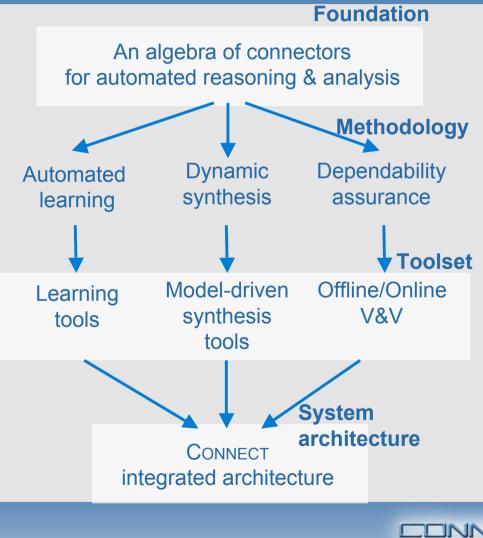
CONNECT Background & Innovation A run-time model-centric approach to eternal connectivity

Get eternally CONNECTed: Emergent connectors for eternal networked systems providing run-time interoperability in highly heterogeneous environments, spanning discovery, interaction & QoS SOTA: Proprietary middleware & pre-built domain-specific interoperability solutions for discovery and interaction protocols

Dependable interactions: On-demand dependability evaluation & automated synthesis of security connectors SOTA: Design-time dependability & monitoring Modelling CONNECTOR behaviours: A theory of connectors supporting automated qualitative & quantitative analyses SOTA: Focus is on design-time usage & functional behaviour

Run-time learning: Behaviour discovery using minimal information about interfaces exposed by NS and ontology information SOTA: Known interface & focus on functional behaviour


CONNECTOR synthesis: Performed at runtime regarding both functional & non-functional properties SOTA: Design-time solutions focused on functional behaviour



http://connect-forever.eu

CONNECT Contributions at a Glance

In Summary: Expected Impact

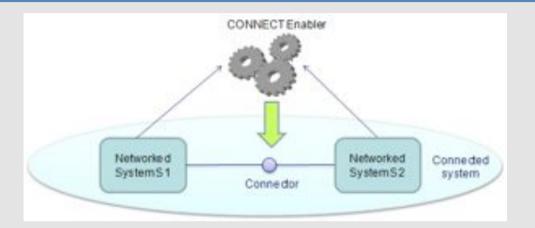
→Scientific

- →Compositional reasoning
- →Automated verification
- →Quantitative analysis

→Technological

- ➔ Software evolution & management
- →New software lifecycle paradigms
- ➔Trustworthy networked systems

→Practical

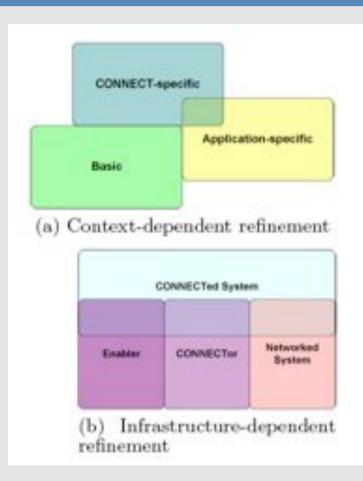

- →Truly pervasive computing
- →Supporting technology diversity
- →Empowering non-IT people

CONNECT Vision

- Enablers represent the core of CONNECT: they can accept requests from networked systems, discover new networked systems, gather / learn information on their functional and extra-functional behaviour, and synthesise a suitable Connector that allows inter-operation among networked systems willing to interact
- Synthesised CONNECTors are concrete, evolvable emergent system entities that allow interoperability, while not compromising the quality of software applications

Focusing on the Dependability activities

- Wide view, including also Performance, Security & Trust
- Spanning 4 major tasks:
 - Dependability metrics for open dynamic systems
 - Including also "soft "metrics (human perspective)
 - Classical measures + refined ones along CONNECT dimensions
 - Dependability V&V in evolving, adaptive contexts
 - Stochastic model-based methods
 - Support from a *monitoring subsystem*
 - Security and privacy
 - Enforcement of security polices
 - Distributed trust management
 - A model for trust and a corresponding reputation scheme


CONNECT Metrics Framework

- Starting point: a set of generic high-level metrics
- Refinement along two main dimensions:
 - the *context-dependent* dimension
 - on the basis of the application scenario and of native architectural aspects of heterogeneous systems that populate the network.
 - the infrastructure-dependent dimension
 - according to structural properties of the CONNECTed world, where different entities have different roles and continuously interact and evolve in a dynamic environment.

Dimensions for Generic Metrics Refinement

Basic: metrics relevant in any Connected context **Application-specific**: metrics refined according to the application domain, e.g., safety-critical,real-time, etc..

Connect-specific: metrics refined according to Connect-relevant aspects of the networked systems, such as heterogeneity and evolution capabilities.

Enabler-specific: metrics of the Enablers, which synthesise Connectors

Connector-specific: metrics of the Connector; these metrics, together with enabler-specific metrics, represent "internal" Connect metrics,

NetworkedSystem-specific: metrics of the networked systems that will use Connectors synthesised by Connect enablers

ConnectedSystem-specific: metrics of the overall Connected system

Example of CONNECT Metrics

• Generic **Reliability** Metric:

Probability for a system to deliver a service to a certain percentage of intended destinations

 Basic,NetworkedSystemspecific

 Probability of successful reception of a message

- Application-, Connect-, ConnectedSystem-specific
- Probability to display the same message on a set of heterogeneous devices located in the same area

- Generic Performance Metric:
- Maximum/minimum/average expected delay incurred in communicating a message
- Basic, Connector-specific
- Time to deliver a message from n sources to m destinations
- Application-, ConnectedSystem-specific
- Time to deliver an alert message to a given percentage of people located in the stadium

Dependability analysis in CONNECT

Useful to

- help in guiding the on-line generation of a CONNECTor with the desired dependability/QoS accomplishment level;
- assess dependability/QoS of emergent CONNECTor, to be used as a further criterion for the optimal selection of a CONNECTor (among several possibly available in the Connect repository);
- assess end-to-end dependability/QoS among the networked systems
- Approaches in CONNECT
 - State-based stochastic methods
 - Stochastic model-checking
- Both complementary usage
 - best fit of the method in accordance with metrics and characteristics of the system under analysis
- and usage for cross-validation purpose are foreseen
- Both offline and online assessment

Challenges in online assessment

- Efficient definition and solution of "system" model
- Integration with monitoring for feeding model with "field" data
- Incremental approach
 - On-line usage of pre-computed analysis
 - incremental off-line exploration of a number of possible system scenarios and on-line selection of the pre-computed analysis on the basis of matching scenarios
 - On-line refinement of partially pre-computed models
 - Compositional/modular model solution
- Other approaches, such as based on Bayesian theory??

