Defect Prediction for Large,
Long-lived Software Systems

Elaine Weyuker
Tom Ostrand
AT&T Labs Research

WG10.4 Workshop on Experimental Computer
Science

July 2-5, 2009 Obidos, Portugal

Outline

Motivation

Systems we've studied
Making predictions
Results

A case study issue
Current status

Motivation

Goal: to determine which files of a large, long-lived
system are most likely to contain faults in next release

Faults are not uniformly distributed over files

Faults are usually concentrated in a very small
percentage of a system’s files

Knowing in advance which files are most likely to be
faulty is a big advantage for system testers and
developers

Number of Files

System N Fault-free Files in all Releases

2500
1 All Files in Release
2000 B Fault-free in Release
1500
1000
500 W
O |

1 2 3 45 6 7 8 91011 1213 14 1516 17

Release Number

Number of Files

System V fault-free files in all quarters

2500

2000

O All Files in quarter

B Fault-free in quarter

1500

1000

500

Systems we’ve studied

Releases/ | LOC inlast | Files in last | Avg # Pct Faulty
Lifetime release release Faults/Rel | Files/Rel
N: Inventory 17/ 538,000 1950 342 4.0-39.9
4 years
W: 9 (3)/ 439,000 2271 34 0.3-3.0
Provisioning 2 years
V: Voice -/ 329,000 1926 151 (per 0.5-27.0
response 2V4 years quarter)
Maintenance 35/ 442,000 668 46 0.9-41.7
support 9 years
BS
BW 35/ 384,000 1413 40 0.1-5.4
9 years
BE 28/ 329,000 584 48 0.2-13.5
[years

System N Profile

2500
2000 —e— Number of files
—=—KLOC
- Faults detected
1500
1000
500
0

1 2 3 4 5 6 7 8 9 10 M 12 13 14 15 16 17

Release Number

System W profile

2500

2000

1500

—o—Files
—m—KLOC

- Faults detected

1000

500

Release

System V profile

2500

2000

—o—Files
—m—KLOC
-~ Faults

1500

1000

500

800

700

600

500

400

300

200

100

1

System BS Profile

—— Files

—=— KLOC

- Faults

2 3 4 5 6 7 8 9 1011 121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Release

Basic attributes used for prediction

KLOC

Previous faults (n-1, n-2)

Previous changes (n-1, n-2)

File age

File status (new, changed, unchanged)
File type (C,C++,java,sqgl,make,sh,perl,...)

Additional attributes for prediction

* Developer count attributes
— Number of developers (release n-1)
— Number of new developers (release n-1)
— Cumulative developers (releases 1:n-1)

 Calling structure attributes
— calling files, called files
— (new, changed, faulty)

Statistical models used

Negative binomial regression
Recursive partitioning

Random forests

Bayesian additive regression trees

System N Results

* Negative binomial regression
« Basic attributes

Percent of Faults Contained in Top

83%)

20% of Files Selected by Model
(Average

B Percent

3 4 5 6 7 8 9 10 1112 13 14 15 16 17

Release

System W results

* Negative binomial model
e Basic attributes

* Low fault count made per-release
predictions not possible

Number of Files and Faults by Release
(System W)

250

200 A

150

® Files /10
B Faults

100 A

Number of Files & Faults

50 A

System W Grouped Releases

‘Release” based on #
Faults
A Release 1
24
B Release 2-5 153
C Release 6-9 130

Rel A used to establish file status in Rel B.
Rel B data used to make predictions for Rel C.

Predictions for Release C
of System W

* Top 20% of files contain 83% of faults

* Top 10% of files contain 68% of faults

System V results

Negative binomial model
Basic attributes

“Releases” are defined as consecutive 3-
month periods.

Top 20% of files contain 61% - 97% of
faults, for quarters 3-9.

Average is 75%

Summary of prediction results

System: Type Period Covered| Faults in
20% Files

N: Inventory 4 years 83%

W: Provisioning 2 years 83%

V: Voice Response 2.25 years 5%

Maintenance Support Systems 9 years 84%

BS

BW [years 93%

BE 9 years 716%

Collecting and Analyzing Data

All 6 projects use a common version control/
change management system

Every SW change is recorded in a detailed
MR (modification request)

MRs: requested changes to
software

Date & release-id of request & changes
Who requests the change

Who makes the change

Attributes of the request & change
Lifecycle phase of request & change
Specific files that are changed

Natural language description

A Case Study Issue:
What is a fault?

— based on attributes?

— based on life-cycle phase?

— based on size of the change?

— based on natural language description?

Which MRs are defects?

Attributes

— Category: action, issue, enhancement, modification,
defect, other

— Type: initialization, new feature, change to existing
feature, fix existing feature

Life-cycle: reqgts, code, unit test, system test,
integration test, UAT, ORT, introduction,
customer use

Fewer than N files modified (at least 1)

Keywords in the description:
— bug, fault, defect, fix

Which MRs are defects?

Attributes

— Category: action, issue, enhancement, modification,
defect, other

— Type: initialization, new feature, change to existing
feature, fix existing feature

Life-cycle: reqts, code, unit test, system test,
integration test, UAT, ORT, introduction,
customer use

Fewer than 3 files modified (at least 1)

Keywords in the description:
— bug, fault, defect, fix

Status

NBR model using basic attributes gives
good results on a variety of systems

Various supplements to basic attributes
provide little or no improvement in accuracy

GUI has been implemented to provide easy
access to prediction model for users

Next step: introduce model for use in
existing large, long-lived AT&T systems

Percent of faults in top 20% of files

100

30

80

70

60

50

40

30

20

10

Comparison of models

80.5

79.9

7.9

934 943

84 .8

70.9

System BS

761

System BW

75.6

65.3

ONBR
ERF
ORP
OBART

System BE

