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Motivation

Goal: to determine which files of a large, long-lived
system are most likely to contain faults in next release

Faults are not uniformly distributed over files

Faults are usually concentrated in a very small
percentage of a system’s files

Knowing in advance which files are most likely to be
faulty is a big advantage for system testers and
developers
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Number of Files
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Systems we’ve studied

Releases/ | LOC inlast | Files in last | Avg # Pct Faulty
Lifetime release release Faults/Rel | Files/Rel
N: Inventory 17/ 538,000 1950 342 4.0-39.9
4 years
W: 9 (3)/ 439,000 2271 34 0.3-3.0
Provisioning 2 years
V: Voice -/ 329,000 1926 151 (per 0.5-27.0
response 2V4 years quarter)
Maintenance 35/ 442,000 668 46 0.9-41.7
support 9 years
BS
BW 35/ 384,000 1413 40 0.1-5.4
9 years
BE 28/ 329,000 584 48 0.2-13.5
[ years
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Basic attributes used for prediction

KLOC

Previous faults (n-1, n-2)

Previous changes (n-1, n-2)

File age

File status (new, changed, unchanged)
File type (C,C++,java,sqgl,make,sh,perl,...)




Additional attributes for prediction

* Developer count attributes
— Number of developers (release n-1)
— Number of new developers (release n-1)
— Cumulative developers (releases 1:n-1)

 Calling structure attributes
— calling files, called files
— (new, changed, faulty)



Statistical models used

Negative binomial regression
Recursive partitioning

Random forests

Bayesian additive regression trees



System N Results

* Negative binomial regression
« Basic attributes
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System W results

* Negative binomial model
e Basic attributes

* Low fault count made per-release
predictions not possible
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System W Grouped Releases

‘Release” based on #
Faults
A Release 1
24
B Release 2-5 153
C Release 6-9 130

Rel A used to establish file status in Rel B.
Rel B data used to make predictions for Rel C.



Predictions for Release C
of System W

* Top 20% of files contain 83% of faults

* Top 10% of files contain 68% of faults



System V results

Negative binomial model
Basic attributes

“Releases” are defined as consecutive 3-
month periods.

Top 20% of files contain 61% - 97% of
faults, for quarters 3-9.

Average is 75%



Summary of prediction results

System: Type Period Covered| Faults in
20% Files

N: Inventory 4 years 83%

W: Provisioning 2 years 83%

V: Voice Response 2.25 years 5%

Maintenance Support Systems 9 years 84%

BS

BW [ years 93%

BE 9 years 716%




Collecting and Analyzing Data

All 6 projects use a common version control/
change management system

Every SW change is recorded in a detailed
MR (modification request)



MRs: requested changes to
software

Date & release-id of request & changes
Who requests the change

Who makes the change

Attributes of the request & change
Lifecycle phase of request & change
Specific files that are changed

Natural language description



A Case Study Issue:
What is a fault?

— based on attributes?

— based on life-cycle phase?

— based on size of the change?

— based on natural language description?



Which MRs are defects?

Attributes

— Category: action, issue, enhancement, modification,
defect, other

— Type: initialization, new feature, change to existing
feature, fix existing feature

Life-cycle: reqgts, code, unit test, system test,
integration test, UAT, ORT, introduction,
customer use

Fewer than N files modified (at least 1)

Keywords in the description:
— bug, fault, defect, fix



Which MRs are defects?

Attributes

— Category: action, issue, enhancement, modification,
defect, other

— Type: initialization, new feature, change to existing
feature, fix existing feature

Life-cycle: reqts, code, unit test, system test,
integration test, UAT, ORT, introduction,
customer use

Fewer than 3 files modified (at least 1)

Keywords in the description:
— bug, fault, defect, fix



Status

NBR model using basic attributes gives
good results on a variety of systems

Various supplements to basic attributes
provide little or no improvement in accuracy

GUI has been implemented to provide easy
access to prediction model for users

Next step: introduce model for use in
existing large, long-lived AT&T systems
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