
Defect Prediction for Large,
Long-lived Software Systems

Elaine Weyuker
Tom Ostrand

AT&T Labs Research

WG10.4 Workshop on Experimental Computer
Science

July 2-5, 2009 Obidos, Portugal

Outline

•  Motivation
•  Systems we’ve studied
•  Making predictions
•  Results
•  A case study issue
•  Current status

Motivation
•  Goal: to determine which files of a large, long-lived

system are most likely to contain faults in next release

•  Faults are not uniformly distributed over files

•  Faults are usually concentrated in a very small
percentage of a system’s files

•  Knowing in advance which files are most likely to be
faulty is a big advantage for system testers and
developers

System N Fault-free Files in all Releases

0
500

1000
1500
2000
2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
um

be
r o

f F
ile

s All Files in Release
Fault-free in Release

0
500

1000
1500
2000
2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Release Number

All Files in Release
Fault-free in Release

System V fault-free files in all quarters

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Quarter

N
um

be
r o

f F
ile

s

All Files in quarter
Fault-free in quarter

Systems we’ve studied
Releases/
Lifetime

LOC in last
release

Files in last
release

Avg #
Faults/Rel

Pct Faulty
Files/Rel

N: Inventory 17/
4 years

538,000 1950 342 4.0-39.9

W:
Provisioning

9 (3)/
2 years

439,000 2271 34 0.3-3.0

V: Voice
response

---/
2¼ years

329,000 1926 151 (per
quarter)

0.5-27.0

Maintenance
support
 BS

35/
9 years

442,000 668 46 0.9-41.7

 BW 35/
9 years

384,000 1413 40 0.1-5.4

 BE 28/
7 years

329,000 584 48 0.2-13.5

System BS Profile

Basic attributes used for prediction

•  KLOC
•  Previous faults (n-1, n-2)
•  Previous changes (n-1, n-2)
•  File age
•  File status (new, changed, unchanged)
•  File type (C,C++,java,sql,make,sh,perl,...)

Additional attributes for prediction

•  Developer count attributes
– Number of developers (release n-1)
– Number of new developers (release n-1)
– Cumulative developers (releases 1:n-1)

•  Calling structure attributes
– calling files, called files
–  (new, changed, faulty)

Statistical models used

•  Negative binomial regression
•  Recursive partitioning
•  Random forests
•  Bayesian additive regression trees

System N Results

•  Negative binomial regression
•  Basic attributes

Percent of Faults Contained in Top
20% of Files Selected by Model

(Average = 83%)

Release

System W results

•  Negative binomial model
•  Basic attributes
•  Low fault count made per-release

predictions not possible

Number of Files and Faults by Release
(System W)

A B C

System W Grouped Releases

“Release” based on #
Faults

 A Release 1
24

 B Release 2-5 153
 C Release 6-9 130

Rel A used to establish file status in Rel B.
Rel B data used to make predictions for Rel C.

Predictions for Release C
of System W

•  Top 20% of files contain 83% of faults

•  Top 10% of files contain 68% of faults

System V results

•  Negative binomial model
•  Basic attributes
•  “Releases” are defined as consecutive 3-

month periods.
•  Top 20% of files contain 61% - 97% of

faults, for quarters 3-9.
•  Average is 75%

Summary of prediction results
System: Type Period Covered Faults in

20% Files
N: Inventory 4 years 83%

W: Provisioning 2 years 83%
V: Voice Response 2.25 years 75%

Maintenance Support Systems

BS
9 years 84%

BW 7 years 93%
BE 9 years 76%

Collecting and Analyzing Data

All 6 projects use a common version control/
change management system

Every SW change is recorded in a detailed
MR (modification request)

MRs: requested changes to
software

•  Date & release-id of request & changes
•  Who requests the change
•  Who makes the change
•  Attributes of the request & change
•  Lifecycle phase of request & change
•  Specific files that are changed
•  Natural language description

A Case Study Issue:
What is a fault?

– based on attributes?
– based on life-cycle phase?
– based on size of the change?
– based on natural language description?

Which MRs are defects?
•  Attributes

–  Category: action, issue, enhancement, modification,
defect, other

–  Type: initialization, new feature, change to existing
feature, fix existing feature

•  Life-cycle: reqts, code, unit test, system test,
integration test, UAT, ORT, introduction,
customer use

•  Fewer than N files modified (at least 1)
•  Keywords in the description:

–  bug, fault, defect, fix

Which MRs are defects?
•  Attributes

–  Category: action, issue, enhancement, modification,
defect, other

–  Type: initialization, new feature, change to existing
feature, fix existing feature

•  Life-cycle: reqts, code, unit test, system test,
integration test, UAT, ORT, introduction,
customer use

•  Fewer than 3 files modified (at least 1)
•  Keywords in the description:

–  bug, fault, defect, fix

Status

•  NBR model using basic attributes gives
good results on a variety of systems

•  Various supplements to basic attributes
provide little or no improvement in accuracy

•  GUI has been implemented to provide easy
access to prediction model for users

•  Next step: introduce model for use in
existing large, long-lived AT&T systems

Comparison of models
Pe

rc
en

t o
f f

au
lts

 in
 to

p
20

%
 o

f f
ile

s

