Lessons from 8 Years of Government Experiments in Cyber Warfare Research and Development

Dr. Tiffany M. Frazier BAE Systems, Arlington, VA

July 2-5, 2009

Approved for Public Release, Distribution Unlimited

Applied Research Cyber Experimentation

Purpose

- Determine promise of current research direction
- Inform determination of future direction of Government-funded research
- Select and reject technologies for continued development and eventual transition to operational use
- Convince operational Government partners to fund technology transfer

Features

- Multi-party: red (attack), blue (defend), white (test), & Government teams
- Technology "bake-off"
 - Performers are either red or blue if research is offensive or defensive
- Tests take place on a 3rd party test range
- Test period tends to be one to six weeks in duration
 - There is always some kind of pre-test "shake out" period
- Preparing for these tests involves an enormous amount of in-house experimentation with its own set of challenges

Experiences in support of this briefing

16 official tests as a performer (research team)

The Technologies

Computer Network Offense Technology

- Ability to attack platforms without being detected
- I.e. despite presence of defensive technologies

Computer Network Defense Technology

- Ability to stop (or limit impact of) unknown attacks
- Key component technologies:
 - Detection
 - Estimation
 - Decision
 - Response
 - Recovery

General nature of the applied research

- Leverage promising academic research
- Conduct our own original research (usually very applied)
- Build a prototype system to realize some integrated capability
- Conduct extensive experimentation and analysis
- Participate in 3rd party validation experiments or tests

Experiments in a Nutshell

Hypothesis Set (per performer)

- Technology meets metric 1
- Technology does not meet metric 1
- Technology meets metric 2
- Technology does not meet metric 2

- ...

• If the technology meets all of the metrics then it is selectable and the overall hypothesis is true:

- A technology can be built to achieve certain new functionality
- That technology can meet metrics 1 through N

Critical Assumptions

- These results are externally valid i.e. they predictive of operational performance
- The metrics measure whether the desired functionality has been successfully built

Example Metrics: DARPA's Dynamic Quarantine Program

DYNAMIC QUARANTINE OF COMPUTER-BASED ATTACKS AGAINST MILITARY ENTERPRISE NETWORKS

Phase I Program Go/No-Go Milestones	Passing Criteria
Containment	Worms released on testbed must be contained to 10% of vulnerable machines by dynamic quarantine defenses.
False positive rate	False positive rate of detector components are not exceed 10 false alarms/day.
Time to recovery	The time to recovery for infected systems shall not exceed 60 minutes.

Phase II Program Go/No-Go Milestones	End of Program Metric Goals
Containment	Worms released on testbed must be contained to 1% of vulnerable machines by dynamic quarantine defenses.
False positive rate	False positive rate of detector components are not exceed 1 false alarm/day.
Time to recovery	The time to recovery for infected systems shall not exceed 6 minutes.

Defense Advanced Research Projects Agency

https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=cd418979156bb07f104065613b5ade6c&_cview=1&cck=1&au=&ck=

Example Metrics: DARPA's DCAMANETS Program

Defense Against Cyber Attacks on Mobile, Ad Hoc Network Systems (MANETS)

Phase I Program Go/No-Go Milestones	Passing Criteria
Containment	MANET-based system must be able to detect and self-reconfigure such that it contains worms released on MANET to 10% of all vulnerable nodes.
False reconfiguration	System does not reconfigure on more than 10% of normal sessions.
System throughput degradation	Good system throughput does not degrade more than 75% on average over the duration of the attack between any source-destination pairs.
Network Overhead	Network overhead generated by distributed detection mechanisms should not exceed 10% of baseline system throughput during normal conditions.

https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=a272938c1bc54afde7c09d8ec76a0fb3&_cview=0

How does this tend to unfold? (For defensive technology R&D)

• Performer research, development, experimentation & analysis (blue)

Metric development and refinement

- May be cooperative or less-than-cooperative
- With multiple performers there is tension to make the metrics favor one party over another

Measurement infrastructure (white) and test attacks (red)

- Performer has to duplicate all of this in their lab (!) to prepare for testing
- White and red teams also have a disadvantage in not being able to test their products against the technology prior to trial runs or even the test

Separate blue and red shake-out periods

Unearth bugs in the infrastructure, performer technology, and attacks

Trial run

- For particularly complex tests → may use a single baseline test attack to shake out the experiment process and further bugs in the various systems
- Frequently there are also tests to make sure the blue technology does not break the attacks simply by being present and running (but not effecting)

Test trials

- Cooperative: red, blue, & white teams run their systems and conduct analysis
- Double blind: blue does not have access to red data, which, in practice, means red will have no meaningful access to blue data

My Rough Assessment

Experiment Design

- Mixed results
- Best when all parties cooperate with as much disclosure as possible

Internal Validity

- Generally good at the appropriate level of fidelity
- Be careful about drawing conclusions at the wrong level of fidelity

External Validity

- The most attention is placed here (still never enough)
- One issue perception of validity not always the same as reality of validity

Repeatability

This is the first thing the teams get right

Reproducibility

- Complexity of experiments & technology → very hard for 3rd party to reproduce
- An interesting and well-explored issue, though, is prepping for 3rd party tests I.e. will my results be reproducible in someone else's target environment?

Analysis and Reporting

- 3rd party generally very poor unless all parties cooperate
- Internal extensive internal analysis has been the driver of research progress

Internal Validity

Complex interacting systems

- Test measurement infrastructure and the test range
- Traffic generation and host/user activity emulation
- Movement scenario (for MANETs)
- The attacks
- The defensive technology

Alternative explanations for the outcome?

- If the technology meets the metrics...
 - Were the tests "too easy"?
 - Did the performers have too much knowledge?
 - Was the target environment realistic enough?

If the test fails...

- Did the technology stop the attack or did the attack simply fail?
- Are we even able to determine why the test failed?

Gaming the test

- Negotiating metrics to make them easier to pass (rare)
- Outright cheating (really rare)

External Validity Challenges Defensive Technology – Test Attacks

Unknown attacks

- There are many challenges in "emulating" unknown attacks
 - It is expensive to develop and test attacks
 - The "good stuff" is just not going to be used
 - At least partly-shared code base (between attacks) is likely
 - Covering the attack space is infeasible
- Pretending known attacks are unknown via Rules of Engagement and an Honor Code
- Even then, any results involving repeated attacks (at some later date) are viewed with suspicion

Results of one experiment were completely dismissed

- Two different performers were able to defend against all test attacks
- The test attacks were blamed (too easy and too narrow)

The next experiment (same performers)

- Good distribution of attacks
- Internal validity / experiment control was poor (more later)

External Validity -Other Realism Issues

Representative populations

- Variability in platforms
 - Hardware, operating systems, applications
- Variability in configurations
 - (Can't have just one systems administrator)
- "Impossible" variability
 - Network infrastructure such as domain controllers

Platforms must be <u>real</u>

- Emulation just does not work at the pointy end of the spear
- Fundamentally, attacks (and therefore defenses) are working around and not at interfaces, are exploiting bugs, etc.
- Farther away from the pointy end emulation is okay
 - E.g. Emulating "the Internet Cloud"
- This realism poses issues for conducting large scale experiments

Criticality of Background noise

I.e. it is easy to defend if the only thing moving is the attack

External Validity -Other Realism Issues

Traffic generation and host/user activity emulation

 Again due to the need for realism, the only way to go is to script real applications to generate real traffic

MGEN (Multi-Generator)

- Open source software that provides the ability to perform IP network performance tests and measurements using UDP/IP traffic
- Developed by the Naval Research Lab
- MGEN emulates packet loss rates, communication delays and more
- Essential for testing Mobile Ad Hoc Network-based technologies

LARIAT (Lincoln Adaptable Real-time Information Assurance Testbed)

- Comprehensive Enterprise network traffic and host/user activity system
- Developed by MIT/Lincoln Labs
- Not publicly available

External Validity -Other Realism Issues

- Traffic generation and host/user activity emulation, cont
- MGEN challenges for Network Defense experimentation
 - Network flows can have realistic content but
 - Applications were simple loops
 - Trivialized host detection technologies
 - > Results were viewed with suspicion as a result

Subsequent experiments

- MGEN still used for network flows and radio emulation
- Extensive effort put into scripting realistic video, voice, logistics and other applications

Repeatability – Some hard challenges well met

Mobile Ad Hoc Networks involve special challenges

- A run is driven by a movement scenario for the "mobile" hosts
- MGEN traffic generation and radio emulation
- Real (heavily scripted) applications
- Control Infrastructure
- The attacks
- And the defensive technology

An impressive amount of repeatability in this complex environment

- Remote repeatable control (scenario-applications-attacks)
- Were able to runs dozens of trials
- Up to 500 real hosts

Tension between realism and performance analysis

- Gap existed between a realistic movement scenario and ability to explore the performance envelopes of the defensive technology
- Difficult to decide which corner cases are worth exploring

Full Disclosure – The Good

Best-value experimentation experience was when all parties worked closely together (red, blue, and white)

- Defensive technology test
- Control infrastructure (known), attacks (unknown), movement scenarios (some unknown), target environment (known)
- All parties get their software debugged and working
- Critical in the MANET environment, for example, which has an extra level of complexity due to the use of movement models and the need to synchronize application execution
 - E.g. Packet loss can lead to dramatically different performance from one run to the next

• Test runs

- Results were available to everyone to analyze
- Once the runs began all data became "known" in real-time
- Some analysis could be performed in real-time as the runs unfolded

Got to test many aspects of the system and corner cases

- Depth of sensor suite
- Distributed coordination algorithms

Full Disclosure – The Ugly (1 of 2)

Worst-value experimentation experience was double blind

- Defensive technology test
- Control infrastructure (known), attacks (unknown), target environment (known)
- Blue technology reported to Red/White data regarding any actions taken against detected attacks
- Red team ran attacks, White team ran the infrastructure, and the Blue team ran the technology
- No sharing of data...
 - The blue team didn't know if and when attacks were being run
 - The red team had no access to blue team GUI to understand what, if anything, the technology was doing in real-time
- Other than the real-time Blue GUI
 - Blue team could collect any blue data desired, but only a day or more AFTER the run completed
- Blue was able to get very limited "ground truth" from White/Red (a day later) e.g. which boxes were successfully attacked and the launch point

Full Disclosure – The Ugly (2 of 2)

And chaos ensued...

- White/Red team did not know if their attacks did not work or if Blue had successfully stopped them
- Blue could only verify if the system had taken any action or not
 - More analysis required access to Blue logs (which were delayed)
- This actually led to the Test Director asking us to change our system configuration
 - Which we did ... "blind" ... based on verbal data from White/Red
- And then the experiment schedule was not sufficiently altered to handle the two configurations
 - Blue Config 2 saw attacks Blue Config 1 had not and vice versa
- All results were viewed with suspicion

At the post test runs hot wash

- Results were mostly empty Red/White teams could not tell what had happened
- Fortunately we could reverse engineer what really happened from our Blue data logs (back in our lab) with the limited "truth" data from White/ Red

Reproducibility -From Performer Test Range to 3rd Party Test Range

Test range

- Hardware differences
- Network infrastructure configurations e.g. domain controllers
- "Surprise" software such as Microsoft's service load balancing

Test measurement and Experiment Control

- Always try to utilize white team's experiment control (though our own usually allows for much more efficient experimentation)
- In one case we wrote line-for-line equivalent metric measurement and analysis code. This was essential for debugging the white team's code.

Target Machines

- System administrator differences
- In the extreme a "recipe" and "gold disk" are used to build identical platforms
- If the targets are supposed to be at least partly "unknown" then planning for last minute integration issues is necessary

Applications

In some cases we never got these working in our lab

"Latest version" issues

Experiment Design - Metrics

- Secondary metrics
 - At the wrong level of fidelity

Successes: Anomaly Detection Research

Started out with academic anomaly detection research

- Host- and network-based anomaly detection research
- Train on normal (host or network) activity, detect attacks as non-normal anomalies

Collected and analyzed an enormous volume of results

Key research areas

- When anomaly detectors fail they can fail spectacularly
- In situ training
- Model aggregation as a way to deal with differences between different network flows and hosts
- Incremental updates to models as normal changes or new normal activity appears
- Rate-based detectors do not work models end up including all possible rates or they end up too narrow & ("boom")
- Feature analysis which features can be successfully abstracted across different hosts and which can not
- "Big" models do not work; lots and lots of small, well-trained models work well
- Breadth of anomaly detector suites
- Scoring functions

Concluding Thoughts

How experiments are conducted is incredibly important

- Methods used in the academic work that we leverage are lacking
- Methods used in our applied research experimentation are "fragile"
 - Can easily go astray → wasted \$ and frustrated scientists
 - What can we do to make this less likely to happen?

My top two wishes for academic research

- A methods section in every paper
- That there was some "3rd party independence" in the experimentation

Internal Validity

Must be careful to draw conclusions at the appropriate level of fidelity

Analysis and Reporting

Cooperative analysis and full disclosure is powerful and essential

Experimentation areas that could use research

- Traffic and host/user activity generation
- Testing against "the unknown"
- External Validity: Need for realism versus need for confidence that the results are representative (statistically)

My worst fear

Our "double blind" nightmare could easily happen again

PEL Model (Gauch, Jr) for Scientific Inquiry

[Archive]