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Machine Translation: 
Where are we today?

• Age of Internet and Globalization – great demand for 
translation services and MT: 
– Multiple official languages of UN, EU, Canada, etc.
– Documentation dissemination for large manufacturers (Microsoft, 

IBM, Apple, HP, Caterpillar, US Steel, ALCOA…)
– Language and translation services business sector estimated at 

$15 Billion worldwide in 2008 and growing at a healthy pace
• Economic incentive is primarily focused on a small number of 

language pairs: European languages, Japanese, Chinese…
• Some increasingly decent commercial products in the market 

for these language pairs
– Primarily a product of rule-based systems after many years of 

development
– New generation of data-driven “statistical” MT: Google, Language 

Weaver
• Web-based (mostly free) MT services: Google, Babelfish, 

others…
• Pervasive MT between many language pairs still non-existent, 

but Google is trying to change that!
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How Does MT Work?

• All modern MT approaches are based on 
building translations for complete 
sentences by putting together smaller 
pieces of translation

• Core Questions:
– What are these smaller pieces of 

translation? Where do they come from?
– How does MT put these pieces together?
– How does the MT system pick the correct 

(or best) translation among many options?
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Core Challenges of MT

• Ambiguity and Language Divergences:
– Human languages are highly ambiguous, and 

differently in different languages
– Ambiguity at all “levels”: lexical, syntactic, semantic, 

language-specific constructions and idioms
• Amount of required knowledge:

– Translation equivalencies for vast vocabularies 
(several 100k words and phrases)

– Syntactic knowledge (how to map syntax of one 
language to another), plus more complex language 
divergences (semantic differences, constructions and 
idioms, etc.) 

– How do you acquire and construct a knowledge base 
that big that is (even mostly) correct and consistent?
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Rule-based vs. Data-driven 
Approaches to MT

• What are the pieces of translation?                       
Where do they come from?
– Rule-based: large-scale “clean” word translation lexicons, 

manually constructed over time by experts
– Data-driven: broad-coverage word and multi-word 

translation lexicons, learned automatically from available 
sentence-parallel corpora

• How does MT put these pieces together?
– Rule-based: large collections of rules, manually developed 

over time by human experts, that map structures from the 
source to the target language

– Data-driven: a computer algorithm that explores millions 
of possible ways of putting the small pieces together, 
looking for the translation that statistically looks best
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Rule-based vs. Data-driven 
Approaches to MT

• How does the MT system pick the correct (or 
best) translation among many options?
– Rule-based: Human experts encode preferences 

among the rules designed to prefer creation of better 
translations

– Data-driven: a variety of fitness and preference 
scores, many of which can be learned from available 
training data, are used to model a total score for 
each of the millions of possible translation 
candidates; algorithm then selects and outputs the 
best scoring translation
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Rule-based vs. Data-driven 
Approaches to MT

• Why have the data-driven approaches become 
so popular?
– We can now do this!

• Increasing amounts of sentence-parallel data are 
constantly being created on the web 

• Advances in machine learning algorithms
• Computational power of today’s computers can train 

systems on these massive amounts of data and can  
perform these massive search-based translation 
computations when translating new texts

– Building and maintaining rule-based systems is too 
difficult, expensive and time-consuming

– In many scenarios, it actually works better!
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Statistical MT (SMT)
• Data-driven, most dominant approach in 

current MT research
• Proposed by IBM in early 1990s: a direct, 

purely statistical, model for MT
• Evolved from word-level translation to phrase-

based translation
• Main Ideas:

– Training: statistical “models” of word and phrase 
translation equivalence are learned automatically 
from bilingual parallel sentences, creating a bilingual 
“database” of translations

– Decoding: new sentences are translated by a 
program (the decoder), which matches the source 
words and phrases with the database of translations, 
and searches the “space” of all possible translation 
combinations. 
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Statistical MT (SMT)
• Main steps in training phrase-based statistical MT:

– Create a sentence-aligned parallel corpus
– Word Alignment: train word-level alignment models  

(GIZA++)
– Phrase Extraction: extract phrase-to-phrase translation 

correspondences using heuristics (Moses)
– Minimum Error Rate Training (MERT): optimize translation 

system parameters on development data to achieve best 
translation performance

• Attractive:  completely automatic, no manual rules, 
much reduced manual labor

• Main drawbacks: 
– Translation accuracy levels vary widely
– Effective only with large volumes (several mega-words) of 

parallel text
– Broad domain, but domain-sensitive
– Viable only for limited number of language pairs!

• Impressive progress in last 5-10 years!
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Statistical MT:
Major Challenges

• Current approaches are too naïve and “direct”:
– Good at learning word-to-word and phrase-to-phrase 

correspondences from data
– Not good enough at learning how to combine these pieces 

and reorder them properly during translation
– Learning general rules requires much more complicated 

algorithms and computer processing of the data
– The space of translations that is “searched” often doesn’t 

contain a perfect translation
– The fitness scores that are used aren’t good enough to 

always assign better scores to the better translations we 
don’t always find the best translation even when it’s there!

– MERT is brittle, problematic and metric-dependent!
• Solutions:

– Google solution: more and more data!
– Research solution: “smarter” algorithms and learning 

methods
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Rule-based vs. Data-driven MT

We thank all participants of the 
whole world for their comical 
and creative drawings; to  
choose the victors was not easy 
task!

Click here to see work of 
winning European of these two 
months, and use it to look at 
what the winning of USA sent 
us.

We thank all the participants 
from around the world for 
their designs cocasses and 
creative; selecting winners 
was not easy!

Click here to see the artwork 
of winners European of these 
two months, and disclosure to 
look at what the winners of 
the US have been sending.

Rule-based Data-driven
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Representative Example: 
Google Translate

• http://translate.google.com

http://translate.google.com/
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Google Translate
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Google Translate
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Need for MT Evaluation
• MT Evaluation is important:

– MT systems are becoming wide-spread, embedded in more 
complex systems

• How well do they work in practice?  
• Are they reliable enough?

– MT is a technology still in research stages
• How can we tell if we are making progress?
• Metrics that can drive experimental development

– SMT’s critical need for good metrics for parameter tuning 
(MERT)

• MT Evaluation is difficult:
– There is no single correct translation (language variability)
– Human evaluation is subjective
– How good is “good enough”?  Depends on application
– Is system A better than system B? Depends on specific 

criteria…
• MT Evaluation is a research topic in itself!  How do we 

assess whether an evaluation method or metric is good?
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Dimensions of MT Evaluation
• Human evaluation vs. automatic metrics
• Quality assessment at sentence (segment) 

level vs. task-based evaluation
• “Black-box” vs. “Glass-box” evaluation
• Adequacy (is the meaning translated 

correctly?) vs. Fluency (is the output 
grammatical and fluent?) vs. Ranking (is 
translation-1 better than translation-2?)
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Human Evaluation of MT Output

Why perform human evaluation?
• Automatic MT metrics are not sufficient:

– What does a BLEU score of 30.0 or 50.0 mean?
– Existing automatic metrics are crude and at times 

biased
– Automatic metrics don’t provide sufficient insight for 

error analysis
– Different types of errors have different implications 

depending on the underlying task in which MT is 
used

• Need for reliable human measures in order to 
develop and assess automatic metrics for MT 
evaluation
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Human Evaluation: Main Challenges

• Reliability and Consistency: difficulty in 
obtaining high-levels of intra and inter-coder 
agreement
– Intra-coder Agreement: consistency of same 

human judge
– Inter-coder Agreement: judgment agreement 

across multiple judges of quality

• Measuring Reliability and Consistency
• Developing meaningful metrics based on 

human judgments
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Main Types of Human Assessments

• Adequacy and Fluency scores
• Human preference ranking of translations at 

the sentence-level
• Post-editing Measures:

– Post-editor editing time/effort measures
– HTER: Human Translation Edit Rate

• Human Editability measures: can humans edit 
the MT output into a correct translation?

• Task-based evaluations: was the performance 
of the MT system sufficient to perform a 
particular task?
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Adequacy and Fluency

• Adequacy: is the meaning translated correctly?
– By comparing MT translation to a reference translation (or 

to the source)?
• Fluency: is the output grammatical and fluent?

– By comparing MT translation to a reference translation, to 
the source, or in isolation?

• Scales: [1-5], [1-10], [1-7], [1-4]
• Initiated during DARPA MT evaluations during mid-

1990s
• Most commonly used until recently
• Main Issues: definitions of scales, agreement, 

normalization across judges
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Human Preference Ranking 
of MT Output

• Method: compare two or more translations of 
the same sentence and rank them in quality
– More intuitive, less need to define exact criteria
– Can be problematic: comparing bad long translations 

is very confusing and unreliable

• Main Issues:
– Binary rankings or multiple translations?
– Agreement levels
– How to use ranking scores to assess systems?
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Human Assessment in WMT-09

• WMT-09: Shared task on developing MT 
systems between several European languages 
(to English and from English)

• Also included a system combination track and 
an automatic MT metric evaluation track

• Official Metric: Human Preference Rankings
• Detailed evaluation and analysis of results
• 2-day Workshop at EACL-09, including 

detailed analysis paper by organizers 
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Human Rankings at WMT-09

• Instructions: Rank translations from Best to Worst 
relative to the other choices (ties are allowed)

• Annotators were shown at most five translations at a 
time.

• For most language pairs there were more than 5 
systems submissions. No attempt to get a complete 
ordering over all the systems at once

• Relied on random selection and a reasonably large 
sample size to make the comparisons fair.

• Metric to compare MT systems: Individual systems 
and system combinations are ranked based on how 
frequently they were judged to be better than or equal 
to any other system.
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Assessing Coding Agreement

• Intra-annotator Agreement:
– 10% of the items were repeated and evaluated twice by 

each judge. 

• Inter-annotator Agreement:
– 40% of the items were randomly drawn from a common 

pool that was shared across all annotators creating a set of 
items that were judged by multiple annotators.

• Agreement Measure: Kappa Coefficient

P(A) is the proportion of times that the annotators agree
P(E) is the proportion of time that they would agree by chance.
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Assessing Coding Agreement

Common Interpretation of Kappa Values:
0.0-0.2: slight agreement
0.2-0.4: fair agreement
0.4-0.6: moderate agreement
0.6-0.8: substantial agreement
0.8-1.0: near perfect agreement
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Assessing MT Systems

• Human Rankings were used to assess:
– Which systems produced the best 

translation quality for each language pair?
– Did the system combinations produce better 

translations than individual systems?
– Which of the systems that used only the 

provided training materials produced the 
best translation quality?
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Automatic Metrics for MT 
Evaluation

• Idea: compare output of an MT system to a “reference” 
good (usually human) translation:  how close is the MT 
output to the reference translation?

• Advantages:
– Fast and cheap, minimal human labor, no need for bilingual 

speakers
– Can be used on an on-going basis during system development 

to test changes
– Minimum Error-rate Training (MERT) for search-based MT 

approaches!
• Disadvantages:

– Current metrics are very crude, do not distinguish well 
between subtle differences in systems

– Individual sentence scores are not very reliable, aggregate 
scores on a large test set are often required

• Automatic metrics for MT evaluation very active area of 
current research 
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Similarity-based 
MT Evaluation Metrics

• Assess the “quality” of an MT system by comparing its 
output with human produced “reference” translations

• Premise: the more similar (in meaning) the translation is 
to the reference, the better

• Goal: an algorithm that is capable of accurately 
approximating this similarity

• Wide Range of metrics, mostly focusing on exact word-
level correspondences:
– Edit-distance metrics: Levenshtein, WER, PIWER, TER & 

HTER, others…
– Ngram-based metrics: Precision, Recall, F1-measure, BLUE, 

NIST, GTM…
• Important Issue: exact word matching is very crude 

estimate for sentence-level similarity in meaning
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Automatic Metrics for MT 
Evaluation

• Example:
– Reference: “the Iraqi weapons are to be handed over to 

the army within two weeks”
– MT output: “in two weeks Iraq’s weapons will give army”

• Possible metric components:
– Precision: correct words / total words in MT output
– Recall: correct words / total words in reference
– Combination of P and R (i.e. F1= 2PR/(P+R))
– Levenshtein edit distance: number of insertions, deletions, 

substitutions required to transform MT output to the 
reference

• Important Issues:
– Features: matched words, ngrams, subsequences
– Metric: a scoring framework that uses the features
– Perfect word matches are weak features: synonyms, 

inflections: “Iraq’s”  vs. “Iraqi”, “give” vs. “handed over”
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Desirable Automatic Metric
• High-levels of correlation with quantified human notions 

of translation quality
• Sensitive to small differences in MT quality between 

systems and versions of systems
• Consistent – same MT system on similar texts should 

produce similar scores
• Reliable – MT systems that score similarly will perform 

similarly
• General – applicable to a wide range of domains and 

scenarios
• Not “Game-able” – not easily susceptible to 

manipulation and cheating   
• Fast and lightweight – easy to run
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History of Automatic Metrics for MT

• 1990s: pre-SMT, limited use of metrics from speech – WER, PI-WER…
• 2002: IBM’s BLEU Metric comes out
• 2002: NIST starts MT Eval series under DARPA TIDES program, using 

BLEU as the official metric
• 2003: Och and Ney propose MERT for MT based on BLEU
• 2004: METEOR first comes out
• 2006: TER is released, DARPA GALE program adopts HTER as its 

official metric
• 2006: NIST MT Eval starts reporting METEOR, TER and NIST scores in 

addition to BLEU, official metric is still BLEU
• 2007: Research on metrics takes off… several new metrics come out
• 2007: MT research papers increasingly report METEOR and TER scores 

in addition to BLEU
• 2008: NIST and WMT introduce first comparative evaluations of 

automatic MT evaluation metrics
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The BLEU Metric 

• Proposed by IBM [Papineni et al, 2002]
• Main ideas:

– Exact matches of words
– Match against a set of reference translations for greater 

variety of expressions
– Account for Adequacy by looking at word precision
– Account for Fluency by calculating n-gram precisions for 

n=1,2,3,4
– No recall (because difficult with multiple refs)
– To compensate for recall: introduce “Brevity Penalty”
– Final score is weighted geometric average of the n-gram 

scores
– Calculate aggregate score over a large test set  
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The BLEU Metric

• Example:
– Reference: “the Iraqi weapons are to be handed 

over to the army within two weeks”
– MT output: “in two weeks Iraq’s weapons will give 

army”

• BLUE metric:
– 1-gram precision: 4/8
– 2-gram precision: 1/7
– 3-gram precision: 0/6
– 4-gram precision: 0/5
– BLEU score = 0   (weighted geometric average)
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The BLEU Metric

• Clipping precision counts:
– Reference1:  “the Iraqi weapons are to be handed 

over to the army within two weeks”
– Reference2:  “the Iraqi weapons will be surrendered 

to the army in two weeks”
– MT output: “the the the the”

– Precision count for “the” should be “clipped” 
at two: max count of the word in any 
reference

– Modified unigram score will be 2/4 (not 4/4)
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The BLEU Metric

• Brevity Penalty:
– Reference1: “the Iraqi weapons are to be handed over to 

the army within two weeks”
– Reference2: “the Iraqi weapons will be surrendered to the 

army in two weeks”
– MT output: “the Iraqi weapons will”
– Precision score: 1-gram 4/4,  2-gram 3/3, 3-gram 2/2,   

4-gram 1/1    BLEU = 1.0
– MT output is much too short, thus boosting precision, 

and BLEU doesn’t have recall…
– An exponential Brevity Penalty reduces score, 

calculated based on the aggregate length (not 
individual sentences)
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Formulae of BLEU
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Weaknesses in BLEU
• BLUE matches word ngrams of MT-translation with multiple

reference translations simultaneously Precision-based 
metric
– Is this better than matching with each reference translation 

separately and selecting the best match?
• BLEU Compensates for Recall by factoring in a “Brevity 

Penalty” (BP)
– Is the BP adequate in compensating for lack of Recall?

• BLEU’s ngram matching requires exact word matches
– Can stemming and synonyms improve the similarity measure and 

improve correlation with human scores?
• All matched words weigh equally in BLEU

– Can a scheme for weighing word contributions improve correlation
with human scores? 

• BLEU’s higher order ngrams account for fluency and 
grammaticality, ngrams are geometrically averaged
– Geometric ngram averaging is volatile to “zero” scores.  Can we 

account for fluency/grammaticality via other means?
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BLEU vs Human Scores
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The METEOR Metric

• Metric developed by Lavie et al. at CMU/LTI:      
METEOR = Metric for Evaluation of Translation with 
Explicit Ordering

• Main new ideas:
– Include both Recall and Precision as score components
– Look only at unigram Precision and Recall
– Align MT output with each reference individually and take 

score of best pairing
– Matching takes into account word variatiability (via 

stemming) and synonyms
– Address fluency via a direct scoring component: matching 

fragmentation
– Tuning of scoring component weights to optimize 

correlation with human judgments
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METEOR vs BLEU

• Highlights of Main Differences:
– METEOR word matches between translation and 

references includes semantic equivalents (inflections 
and synonyms)

– METEOR combines Precision and Recall (weighted 
towards recall) instead of BLEU’s “brevity penalty”

– METEOR uses a direct word-ordering penalty to 
capture fluency instead of relying on higher order   
n-grams matches

– METEOR can tune its parameters to optimize 
correlation with human judgments

• Outcome: METEOR has significantly better 
correlation with human judgments, especially 
at the segment-level
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METEOR Components

• Unigram Precision: fraction of words in the MT 
that appear in the reference

• Unigram Recall: fraction of the words in the 
reference translation that appear in the MT

• F1= P*R/0.5*(P+R)
• Fmean = P*R/(α*P+(1-α)*R)
• Generalized Unigram matches: 

– Exact word matches, stems, synonyms

• Match with each reference separately and 
select the best match for each sentence
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The Alignment Matcher

• Find the best word-to-word alignment match 
between two strings of words
– Each word in a string can match at most one word in 

the other string
– Matches can be based on generalized criteria: word 

identity, stem identity, synonymy…
– Find the alignment of highest cardinality with 

minimal number of crossing branches
• Optimal search is NP-complete

– Clever search with pruning is very fast and has near 
optimal results

• Greedy three-stage matching: exact, stem, 
synonyms 
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Matcher Example

the sri lanka prime minister criticizes the leader of the country

President of Sri Lanka criticized by the country’s Prime Minister
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The Full METEOR Metric

• Matcher explicitly aligns matched words between MT 
and reference

• Matcher returns fragment count (frag) – used to 
calculate average fragmentation
– (frag -1)/(length-1)

• METEOR score calculated as a discounted Fmean score
– Discounting factor: DF = γ * (frag**β)
– Final score: Fmean * (1- DF)

• Original Parameter Settings:
– α= 0.9   β= 3.0  γ= 0.5

• Scores can be calculated at sentence-level
• Aggregate score calculated over entire test set (similar 

to BLEU)



July 3, 2009 Óbidos Workshop 48

METEOR Metric

• Effect of Discounting Factor:

Fragmentation Factor
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METEOR Example

• Example:
– Reference: “the Iraqi weapons are to be handed over to 

the army within two weeks”
– MT output: “in two weeks Iraq’s weapons will give army”

• Matching: Ref:   Iraqi weapons army two weeks
MT:   two weeks Iraq’s weapons army

• P = 5/8 =0.625   R = 5/14 = 0.357   
• Fmean = 10*P*R/(9P+R) = 0.3731
• Fragmentation: 3 frags of 5 words = (3-1)/(5-1) = 0.50
• Discounting factor: DF = 0.5 * (frag**3) = 0.0625
• Final score: 

Fmean * (1- DF) = 0.3731 * 0.9375 = 0.3498
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BLEU vs METEOR

• How do we know if a metric is better?
– Better correlation with human judgments of 

MT output
– Reduced score variability on MT outputs 

that are ranked equivalent by humans
– Higher and less variable scores on scoring 

human translations against the reference 
translations
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Correlation with Human Judgments

• Human judgment scores for  adequacy and fluency, 
each [1-5] (or sum them together)

• Pearson or spearman (rank) correlations
• Correlation of metric scores with human scores at the 

system level
– Can rank systems
– Even coarse metrics can have high correlations

• Correlation of metric scores with human scores at the 
sentence level
– Evaluates score correlations at a fine-grained level
– Very large number of data points, multiple systems
– Pearson correlation
– Look at metric score variability for MT sentences scored as 

equally good by humans
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Evaluation Setup

• Data: LDC Released Common data-set 
(DARPA/TIDES 2003 Chinese-to-English and 
Arabic-to-English MT evaluation data)

• Chinese data: 
– 920 sentences, 4 reference translations
– 7 systems

• Arabic data:
– 664 sentences, 4 reference translations
– 6 systems

• Metrics Compared: BLEU, P, R, F1, Fmean, 
METEOR (with several features)
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METEOR vs. BLEU: 
2003 Data, System Scores

BLEU Scores vs. Total Human Scores for 2003 Data
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METEOR vs. BLEU: 
2003 Data, Pairwise System Scores

Pairwise Differences in BLEU Scores vs. Total Human Scores for 2003 Data

y = 0.1522x + 0.0114
R2 = 0.6818
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Evaluation Results:
System-level Correlations

Chinese data Arabic data Average

BLEU 0.828 0.930 0.879

Mod-BLEU 0.821 0.926 0.874

Precision 0.788 0.906 0.847

Recall 0.878 0.954 0.916

F1 0.881 0.971 0.926

Fmean 0.881 0.964 0.922

METEOR 0.896 0.971 0.934
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METEOR vs. BLEU
Sentence-level Scores

(CMU SMT System, TIDES 2003 Data)

BLEU Sentence Scores vs. Total Human Score
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Evaluation Results:
Sentence-level Correlations

Chinese data Arabic data Average

BLEU 0.194 0.228 0.211

Mod-BLEU 0.285 0.307 0.296

Precision 0.286 0.288 0.287

Recall 0.320 0.335 0.328

Fmean 0.327 0.340 0.334

METEOR 0.331 0.347 0.339
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Adequacy, Fluency and Combined:
Sentence-level Correlations

Arabic Data

Adequacy Fluency Combined

BLEU 0.239 0.171 0.228

Mod-BLEU 0.315 0.238 0.307

Precision 0.306 0.210 0.288

Recall 0.362 0.236 0.335

Fmean 0.367 0.240 0.340

METEOR 0.370 0.252 0.347
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METEOR Mapping Modules:
Sentence-level Correlations

Chinese data Arabic data Average

Exact 0.293 0.312 0.303

Exact+Pstem 0.318 0.329 0.324

Exact+WNste 0.312 0.330 0.321

Exact+Pstem
+WNsyn

0.331 0.347 0.339
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Normalizing Human Scores

Chinese data Arabic data Average

Raw Human 
Scores

0.331 0.347 0.339

Normalized 
Human Scores

0.365 0.403 0.384

• Human scores are noisy:
– Medium-levels of intercoder agreement, Judge biases

• MITRE group performed score normalization
– Normalize judge median score and distributions

• Significant effect on sentence-level correlation 
between metrics and human scores
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METEOR vs. BLEU
Histogram of Scores of Reference Translations

2003 Data

Histogram of BLEU Scores for each Reference Translation
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Histogram of METEOR Scores for each Reference Translation
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METEOR Parameter Optimization

• METEOR has three “free” parameters that can be 
optimized to maximize correlation with different notions 
of human judgments
– Alpha controls Precision vs. Recall balance
– Gamma controls relative importance of correct word 

ordering
– Beta controls the functional behavior of word ordering 

penalty score
• Optimized for Adequacy, Fluency, A+F, and Rankings 

for English on available development data
• Optimized for languages other than English
• Limited number of parameters means that optimization 

can be done by full exhaustive search of the parameter 
space
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METEOR Parameter Optimization

• Optimizing for Adequacy, Fluency and A+F
• Original Parameters:

– α= 0.9   β= 3.0  γ= 0.5
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METEOR Parameter Optimization
• Optimizing for other languages
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METEOR Parameter Optimization
• Optimizing for Ranking
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NIST Metrics MATR
• First broad-scale open evaluation of automatic metrics 

for MT evaluation – 39 metrics submitted!!
• Evaluation period August 2008, workshop in October 

2008 at AMTA-2008 conference in Hawaii
• Methodology:

– Evaluation Plan released in early 2008
– Data collected from various MT evaluations conducted by 

NIST and others
• Includes MT system output, references and human judgments
• Several language pairs (into English and French), data genres, 

and different human assessment types
– Development data released in May 2008
– Groups submit metrics code to NIST for evaluation in 

August 2008, NIST runs metrics on unseen test data
– Detailed performance analysis done by NIST

• http://www.itl.nist.gov/iad/mig//tests/metricsmatr/2008/results/index.html

http://www.itl.nist.gov/iad/mig//tests/metricsmatr/2008/results/index.html
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NIST Metrics MATR
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NIST Metrics MATR
• Human Judgment Types:

– Adequacy, 7-point scale, straight average
– Adequacy, Yes-No qualitative question, proportion of Yes 

assigned
– Preferences, Pair-wise comparison across systems
– Adjusted Probability that a Concept is Correct
– Adequacy, 4-point scale
– Adequacy, 5-point scale
– Fluency, 5-point scale
– HTER

• Correlations between metrics and human judgments at 
segment, document and system levels

• Single Reference and Multiple References
• Several different correlation statistics + confidence
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NIST Metrics MATR
• Human Assessment Type: Adequacy, 7-point scale, straight average
• Target Language: English
• Correlation Level: segment
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NIST Metrics MATR
• Human Assessment Type: Adequacy, 7-point scale, straight average
• Target Language: English
• Correlation Level: segment
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NIST Metrics MATR
• Human Assessment Type: Adequacy, 7-point scale, straight average
• Target Language: English
• Correlation Level: document
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NIST Metrics MATR
• Human Assessment Type: Adequacy, 7-point scale, straight average
• Target Language: English
• Correlation Level: system
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NIST Metrics MATR
• Human Assessment Type: Preferences, Pair-wise comparison across systems
• Target Language: English
• Correlation Level: segment
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Comparative MT Evaluations:
Challenges and Pitfalls

• Test set changes from year to year:
– Unlike metrics, MT systems are too complex to be “submitted” for

evaluation by a central party
– To guard against cheating, a new test set is created every year
– Significant effort to try ensure comparable test set difficulty levels
– Results comparable across systems, but difficult to assess year-

to-year progress
• NIST MT Eval solution: 

– Two test sets “comparative” and “progress”
– Only trusted parties allowed to participate on “progress” set, must 

delete all traces of data after the evaluation
• DARPA GALE solution:

– Try hard to control for test set difficulty
– Reuse some “sequestered” material from previous years 

evaluation to select new test sets of similar difficulty  
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Comparative MT Evaluations:
Challenges and Pitfalls

• What is the “official” metric for the evaluation?
– Should the official metric be a human judgment type?  Which 

one?
– Should there even be one single official metric?  Why not run 

several?
– Is it important that systems be able to tune to the official 

evaluation metric?  Does that introduce a bias against certain 
systems?

• NIST MT Eval solution:
– BLEU as the “official” metric, but report results with other metrics 

as well, and do some human judgment assessment
– Best system according to BLEU was NOT always the best system 

according to human judgments
• WMT-09 Solution:

– Human Preferences is the official metric
– Systems can tune to whatever metric they want
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Comparative MT Evaluations:
Challenges and Pitfalls

• How meaningful are these comparative 
evaluations?  What do we really learn?
– They control for common training and test material, 

but much is left intentionally uncontrolled
• Computational resources and runtime conditions
• Various parameter settings within the systems

• How meaningful are these metric scores?
– What does a BLEU (or METEOR) score of 30 or 50 

mean?
– Non-experts (i.e. DARPA higher ups) tend to think 

these scales are linear and extrapolate!
– Multiple DARPA PMs have gotten into trouble because 

of this…
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Why Not Use METEOR?
• METEOR is in many respects clearly superior to BLEU, so 

why hasn’t it replaced BLEU so far?
– Problems with using METEOR for MERT

• Speed issues, length issues
• SMT groups want to be tested using the metric to which they 

tune!   But is this a good or bad thing?
– No broad “buy-in” from the research community

• “Everyone uses BLEU”, BLEU is still the official metric for NIST
MT Evals, so why use anything else?

• Reuse of existing components such as MERT
• Most MT researchers are not experts in MT evaluation, don’t 

quite understand why using BLEU isn’t good enough
– Very limited amounts of research funding!
– Publicity and promotion are difficult
– Strong party interests, politics and rivalry
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Some Consequences for MT Research

• Many MT research papers get accepted based 
on +1 point BLEU improvements

• Real error analysis of MT output is already 
very lacking…

• I worry NOT about the cases where BLEU went 
up… but rather about the cases where BLEU 
stayed the same or went slightly down

• I tell my students: 
– Run BLEU, METEOR and TER… if all go up, great!
– If one goes up but the other goes down or stays the 

same, then something interesting is going on here!
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Summary
• MT Evaluation is extremely important for driving system 

development and MT technology as a whole
• Human evaluations are costly, but are still the most 

meaningful
• There is no real substitute to human error analysis
• New “heavier” metrics that achieve better correlation 

with human judgments are being developed…
• But these are not yet practical for MERT 
• Forums such as NIST Metrics MATR are new, but are 

very important to progress
• Methodology dilemmas in executing both micro and 

macro MT evaluations 
• Lots of interesting and challenging work to do!
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