Dependability Evaluation of mobile applications

Connectivity Dynamics in Vehicular Freeway Scenarios

Ossama Hamouda⁺, Mohamed Kaâniche⁺, Erling Møller^{*}, Jakob Rasmussen^{*}, Hans-Peter Schwefel^{*^}

> ⁺LAAS-CNRS, France *Aalborg University ^Forschungszentrum Telekommunikation Wien

Forschungszentrum Telekommunikation Wien

- Highly-Dependable IP-based NETworks and Services
- □ FP6 Specific Targeted Research Project (STREP)
- □ Jan. 2006 March 2009
- 9 parteners 8 european projects
 - Industry : 4 , Research Labs & Universities : 5
 - Industrial Advisory Board : BMW (G), Nokia (F), Renault, France Telecom, Intects (I), Siemens (G)

HIDENETS: Context and objectives

- Develop and analyze end-to-end system dependable solutions for scalable distributed applications and mobility aware services services
- Automotive Applications
 - Car-to-car communication with server-based infrastructure

Distributed Black Box Application

Scenario

- Data owner collects data at regular intervals
- Data replicated and backed up on neighbouring cars (contributors)
- Data stored on infrustructure when access is available to the owner or the contributors
- Data replication based on erasure codes (n,k)
 - n: number of fragments generated
 - k: minimum number of fragments to restore data

□ Evaluation

- Comparative analysis of replication strategies
- Measure: Probability of data loss

GSPN model for (n,k) erasure codes

L. Courtes, O. Hamouda, M.Kaâniche, M.O.Killijian, D.Powell, Dependability evaluation of cooperative backup strategies for mobile devices, PRDC 2007, Melbourne (Australia), 17-19 December 2007, pp.139-146

Example results from GSPN model

Comparison: with/without cooperative backup LRF(n,k) = data loss reduction factor

L. Courtes, O. Hamouda, M.Kaâniche, M.O.Killijian, D.Powell, Dependability evaluation of cooperative backup strategies for mobile devices, PRDC 2007, Melbourne (Australia), 17-19 December 2007, pp.139-146

Analysis of node encounters distribution

- 1. Analytical proof of *Poisson* encounter process
 - Cars move independently according to speed distribution f(v)
 - opposite directions on upper and lower half
 - Initial placement of cars according to a spatial
 Poisson process (ρ: car density)
 - Fixed communication radius for the cars: R
- 2. *Poisson* distribution confirmed by simulation of more complex scenarios with independent movement of cars
 - single-hop and multi-hops scenarios
 - connectivity duration analysis
- 3. Mobility with dependencies between vehicles
 - variable speeds, cars can get slowed down by cars in front of them, cars can change lanes, correlation between cars trajectories
 - encounters described by non-homogeneous Poisson process

encounter rate $\alpha = \rho * E|V|$

Simulation of connectivity dynamics

 V_{min} =80*km/hr*; V_{max} =130*km/hr*; V_1 =108*km/hr*; W=15*m*; x_1 =2500*m*; y_1 =5*m*; Δt =0.1*sec*; L=4000*m*; simulation steps=600*300 *times*;

\boldsymbol{S} imulation \boldsymbol{R} esults: time to encounter a new neighbor

 V_{min} =80*km/hr*; V_{max} =130*km/hr*; V_1 =108*km/hr*; W=15*m*; x_1 =2500*m*; y_1 =5*m*; Δt =0.1*sec*; L=4000*m*; simulation steps=600*300 *times*;

\mathbf{S} IMULATION: CONNECTIVITY DURATION

T : connectivity duration random variable with p.d.f g(t)

V: relative speed with p.d.f f(v)

$$g(t) = f(2R/t)\frac{2R}{t^2}$$

→

Future work

- Assess sensitivity of results when the exponential distribution is not acceptable
- Analyse connectivity parameters distribution in other traffic scenarios (simulation, real traces)
- More general assumptions
 - Trust and cooperation wrt participating nodes
 Selfish nodes, Remuneration/Penalties
 - Other dissemination strategies
 more than one fragment per node, flooding,
 - Take into account Data freshness in data restoration strategies