
Structured Occurrence Nets

Brian Randell and Maciej Koutny

Newcastle University, UK

Summary

• We introduce the concept of a Structured Occurrence Net
(SON), based on that of an ‘occurrence net’ (ON) - a well-
established formalism for an abstract record that represents
causality and concurrency information concerning a single
execution of a system.

• SONs consist of multiple related ONs, and are intended for
recording either actual system behaviour, or evidence
concerning alleged past behaviour.

• We show how SONs can enable better understanding of
complex fault-error-failure chains (i) among co-existing
interacting and evolving systems, (ii) between systems and
their sub-systems, and (iii) involving systems that are
controlling, supporting, creating or modifying other systems.

• We discuss how, perhaps using extended versions of
existing tools, SONs could form a basis for improved
techniques of system failure prevention and analysis.

Occurrence Nets

• ONs are directed acyclic graphs that portray the (alleged) past and
present state of affairs, in terms of places (i.e. conditions, represented by
circles), transitions (i.e. events, represented by rectangles) and arrows
(each from a place to a transition, or from a transition to a place,
representing (alleged) causality).

• Occurrence nets look like “unwound” Petri Nets, but have no necessary
link to PNs.

• For simple nets, an actual graphical representation suffices. (In the case of
complex nets, these are better represented in some linguistic or tabular
form.)

• What we have realised is that ‘system’ and ‘state’ are not separate
concepts, but just a question of abstraction, so that (different related)
occurrence nets can represent both systems and their states using the
same symbol - a ‘place’. (We make use of this to deal with evolving
systems.)

• In fact in this talk we introduce and define, and discuss the utility of,
several types of relation between occurrence nets, since - in the interests
of complexity reduction - we also employ related sets of relatively simple
occurrence nets to substitute for very large single occurrence nets.

(Graphical) Representation of ONs

c6 c1

c2

c3

c4

c5

e1

e2

e4

e3

extant condition past condition

event condition

occurrence net

interaction

Occurrence Nets and System Failures

• Occurrence Nets are a convenient way of recording or visualising the activity of a
system, in particular the flow of errors within a system caused by a fault.

• We say a failure occurs when an error passes through the system-user interface and
affects the service delivered by the (compound) system

• This failure may constitute a fault to the enclosing system

• The manifestation of failures/faults/errors thus follows a chain:

 . . . -> failure -> fault -> error -> failure -> fault ->. . .

• This chain can flow from one system to:

– another system that it is interacting with

– the system which it is part of

– a system which it creates, modifies, or sustains

• A single huge occurrence net could be used to record or visualize the combined and
perhaps concurrent activities of a whole set of error-prone systems, and hence to
investigate such fault/error/failure chains among such systems.

• Occurrence nets can readily portray situations in which there are multiple faults - (a
failure may be judged to be due to multiple co-incident faults, e.g. the activity of a
hacker exploiting a bug left by a programmer)

• But the problems of modelling evolving systems, and the complexity of situations
involving multiple interacting and evolving systems, have motivated our introduction
of structured occurrence nets.

Structured Occurrence Nets

• A Structured Occurrence Net is the term we use for a related set of
Occurrence Nets (using several specific forms of relation)

• The Occurrence Nets used in a SON are in fact coloured directed acyclic
graphs, the colouring being used in order that the states of different
systems can be distinguished.

• The various relations we have defined are all such that SON’s, like ONs,
are acyclic - and so respect the causality rules.

• The significance of SONs is that (i) their structuring reduces their
complexity, compared to that of an equivalent ON, and (ii) they provide a
direct means of modelling evolving systems.

• These advantages can we believe facilitate such tasks as system
evaluation (via model-checking), system synthesis, and system failure
analysis. In this presentation we concentrate just on system failure
analysis.

• And here the SON idea is illustrated not just with computer systems, but
also railway systems!

EDB YRK DHM PBO NCL

CAR

KGX

Portraying (the activity of) a train system

YRK E-N DHM NCL EDB KGX N-D D-Y Y-K

YRK PBO Y-P N-Y

dep.E dep.N dep.D dep.Y arr.N arr.D arr.Y arr.K

dep.N dep.Y arr.Y arr.P

A SON Portrayal of these Train Journeys

This Structured Occurrence Net is composed of two

“interacting” Occurrence Nets.
Thick dashed arcs relate the two ONs by indicating

events in one ON that are causal predecessors of
events in the other ON. (Thus they indicate that there

was unidirectional information flow - of passengers!)

exchange server

1st interaction – send queued email messages

2nd interaction – synchronise calendars

desktop machine

But the portrayal could be of

interacting computing systems

Detailed Interactions in a single ON

Such apparently simple interactions between the

two ONs might in the equivalent (unstructured)
single large ON involve extensive sequences of

interactions, whose complexity is merely hinted
at above.

Synchronous interactions between ONs

Further hiding of complexity in the SON can be achieved by

abbreviating sequences of events. But this could introduce
cycles, which are no more allowed in SONs than they are in

ONs - this motivates the introduction of the concept of
undirected (i.e. synchronous) interactions between ONs.

(Asynchronous interactions between ONs are shown by thick

dashed arcs, synchronous ones by thick dashed edges.)

EDB YRK DHM PBO NCL

CAR

KGX

oops! (Arrival at a wrong station!)

Portraying failure of a (train) system

Failure Analysis 1

• Failure analysis can involved following links in ONs

backwards in order to identify causes (faults), and then
forwards to identify further errors.

• Arcs and edges (asynchronous and synchronous

interactions) between ONs in a SON can similarly be
followed in each direction, to trace fault/error/failure

chains between systems, e.g. between interacting

systems.

• Other types of relations between ONs (defined later) can

also be involved in such analysis

• However, the actual identification of errors and faults

requires additional information, e.g. obtained from
system specifications.

YRK E-N DHM NCL EDB KGX N-D D-Y Y-K

YRK PBO Y-P N-Y

dep.E dep.N dep.D dep.Y arr.N arr.D arr.Y arr.K

dep.N dep.Y arr.Y arr.P

Investigating the causes of failure

it’s elementary!

Behavioral Abstraction

• Any condition can be viewed either as a state (of

some system), or as a system itself (that presumably
has its own states) - which is just a matter of

viewpoint.

• Thus one could have two related ONs, one showing

how a system is evolving (e.g. being modified), the

other showing the behaviours of each version of this

system. In fact the first ON can be viewed as the
behavioural abstraction of the second ON.

• Such behavioural abstraction is a further type of

relation that can be used to construct a SON out of
multiple ONs.

• However, unlike the other relations, such as

interaction, it enables us to portray histories that
could not be shown using just a single very large ON.

EDB YRK DHM PBO NCL KGX

repair

A Two-Level view of a Train

(and its Repair)

EDB KGX

repair@YRK faulty engine repaired engine

A SON Portraying such Train Repair

paper-v1.doc

software upgrade Word 3.1 Word 4.3

paper-v2.doc paper-v3.doc paper-v4.doc paper-v5.doc paper-v6.doc

paper-v8.doc

paper-v7.doc

Note - A SON that involves behavioural abstraction cannot be

represented in ordinary occurrence nets

Software Modification

paper-v1.doc

software upgrade Word 3.1 Word 4.3

paper-v2.doc paper-v3.doc paper-v4.doc paper-v5.doc paper-v6.doc

paper-v8.doc

paper-v7.doc

error!

it’s elementary!

Investigating failure of an evolving system

Word

Excel

it’s elementary!

A combined investigation: intra- and inter-level error in a

spreadsheet has been caused by a Word version change

And system A begat system B . . .

The next example shows that one system has spawned another
system, and after that both systems went through some
independent further evolutions - and indicates how the latest
versions of these systems have interacted (first as an animation,
then using a SON).

EDB YRK EUS NCL KGX

“Creating” Trains

EDB EUS

KGX EUS

NCL YRK KGX

YRK

Portraying System Creation,

using a SON

OS kernel

user’s thread

And showing a software example . . .

OS kernel

user’s thread

. . . though hiding the hideous details

Compositional (Spatial) Abstraction

This shows the behaviour of a system and of its component systems,
and how its behaviour is related to that of its components. (It does not
represent the matter of how, or indeed whether, the component
systems are enabled to interact, i.e., what design is used, or what
connectors are involved.) Each component system has the other(s) as
its environment.

“Composing” a train

The composition relation links all the events in the

components to events in the composed system, and all the
states in the components to ones in the composed system

Recovery Points

To allow for the possibility of failure a system might, e.g., make
use of recovery points . Such recovery points can be recorded in
retained states that take no further (direct) part in the system s
ongoing (normal) behaviour.

Information retention

Judgemental Systems

• The notion of a ‘failure’ event involves, in principle, three

systems — the given (possibly failing) system, its environment,
and a judgemental system.

• The judgemental system may interact directly and immediately

with the given system, in which case it is part of the system’s
environment, e.g., a built-in checking circuit, or in a very

different world, a football referee!

• Alternatively the judgemental system may be deployed after the
fact using an occurrence net that represents how the failing

event (is thought to have) occurred.

• Such an occurrence net can be recorded in a retained state,

e.g., that of the judgment system.

Interpretation: the witness to the alibi withdrew his testimony

Post-hoc Judgement

The judgement system has obtained only incomplete evidence of
the systems states and events and even the causal relationships

between conditions and events.

A A

A

A A

B B B B B

A

A A A

B

Alternative (Assumed) Scenarios

• Differing evidence or interpretations can lead to differing portrayals of a

given system’s activity
• In the two ONs shown above the letters ‘A’ and ‘B’ distinguish between

two alternative views of some of the states and events that feature in
these portrayals of a given system’s activity.

A A

A

A A

B B B B B

A

A A A

B

Incorporating Alternatives in a single SON

Slide 32

• We allow the simultaneous modelling of multiple alternative scenarios,

within a single ON, when there is insufficient evidence to indicate which
particular scenario actually occurred.

• Again using the letters ‘A’ and ‘B’ distinguish between two alternative
possible system activities, the above ON shows two ways in which the

given system’s final state might have come about have been envisaged

and are being represented in a single ON.
• This ON can be regarded as a combination of the two alternative ONs,

but is more likely to have been developed by adding alternatives to an
initial simpler ON.

A A

A

A A

B B B B B

A

A A A

B

disallowed!

An Assumed Scenario Incorporating

Alternative Possibilities - but . . .

Alternative chains of activity within a single ON represent

happenings in what are in effect different “worlds”, and it would
not make sense to have any interactions, however indirect,

between such worlds

A A

A

A A

B B B B B

A

A A A

B

0.7

0.3

0.6

0.4

Uncertain Evidence

It could be useful to be able to annotate particular events,

conditions, links and relations with some form of probability
estimate – indicating the current degree of certainty a judge

has about the accuracy of their representation.

Failure Analysis 2

• SONs could be used to represent actual or assumed past
behaviour, or possible future behaviour, and to record F-E-
F chains between systems.

• They could be generated and recorded (semi?)
automatically – alternatively they might need to be
generated retrospectively, from whatever evidence and
testimony is available.

• Analysis of a SON typically involves following (possibly in
both directions) causal arrows within ONs, and the various
different sorts of relations between ONs.

• Such analysis is of course limited by the accuracy and the
completeness of the SON – and might be interspersed
with efforts at validating and enhancing the SON.

Our one “experiment” to date

• Ladbrooke Grove was the scene of a bad railway accident in October
1999, when a three-car Class 165 diesel train operated by Thames
Trains collided with a First Great Western High Speed Train

• The immediate cause of the disaster - the diesel train passed a particular
signal when red.

• A lengthy enquiry identified many more issues, and many systems (rail
companies, government organizations, people, trains, etc.) were
implicated.

• As a (thought) experiment we have considered how the huge mass of
evidence considered by the enquiry could be represented and analyzed.

• We have used the conventional Entity-Relationship graphical notation,
the entities in fact being individual (un-detailed) occurrence nets,
representing information about the activities of each of the systems
involved, the whole being a very large SON.

• Our belief is that, with the right tool support, such a SON could greatly
aid the documentation and analysis of such a complex failure situation.

Concluding Remarks 1

• Our various types of abstractions are all ones that could facilitate
the task of understanding complex systems and their failures, and
analyzing the cause(s) of such failures.

• They would in most cases be a natural consequence of the way
the systems have been conceived and perceived. Thus they can
be viewed as providing a means of naturally structuring what
would otherwise be an impossibly large and complex occurrence
net.

• Alternatively, they can be viewed as a way of reducing the
combinatorial complexity of the information accumulated and the
analyses performed in following fault-error-failure chains after the
fact.

• In either case, computer assistance is needed, something we
plan to investigate, building on existing work at Newcastle and
elsewhere.

• We provide the formalizations of the various types of abstraction
that are needed as a starting point for this investigation. (It's not
just a set of pretty pictures!)

Examples of What You’ve Been Spared

Concluding Remarks 2

• The messages we’re trying to put over are that we have a formal
notation for portraying failure-prone activities of sets of evolving
systems, a notation that is intended to be able to deal with very
complex situations;

• The purposes for such notations are not just system failure
analysis but also system validation and system synthesis

• Our notation isn’t yet fully sufficient for any for these three things
(... look for the text ...) but it can provide a powerful
infrastructure /basis for analysis algorithms, etc.

• We have tried one interesting thought experiment - in examining
how we might use a SON to aid analysis of the Ladbroke Grove
Rail Crash, in fact by identifying a possible set of ONs and their
relationships.

• But we also argue that SONs could be of utility, through their role
in complexity reduction, in tools for system validation (through
model-checking), and system synthesis - but that’s another talk!

Some of our References

• Best, E. and Randell, B. (1981). A Formal Model of Atomicity in Asynchronous
Systems, Acta Informatica, Vol. 16 (1981), pp 93-124. Springer-Verlag Germany.
http://www.cs.ncl.ac.uk/research/pubs/articles/papers/397.pdf

• Chatain, T. and Jard, C. (2004). Symbolic Diagnosis of Partially Observable
Concurrent Systems. Proc. of FORTE’04, LNCS 3235, 326–342.

• Grahlmann, P and Best, E: PEP - More than a Petri net tool. Proc. of TACAS'96,
LNCS 1055, 1996, pp.397-401 [PEP]

• Holt, A.W., Shapiro, R.M., Saint, H., and Marshall, S., “Information System
Theory Project”, Appl. Data Research ADR 6606 (US Air Force, Rome Air
Development Center RADC-TR-68-305), 1968.

• Khomenko, V. and Koutny, M.: Branching Processes of High-Level Petri Nets,
Proc. of TACAS'03, LNCS 2619, 2003 pp.458-472,
http://www.cs.ncl.ac.uk/research/pubs/articles/papers/425.pdf

• Merlin, P.M. and Randell, B. State Restoration in Distributed Systems, In Proc
FTCS-8, Toulouse, France, 21-23 June 1978 pp. 129-134. IEEE Computer
Society Press 1978 http://www.cs.ncl.ac.uk/research/pubs/articles/papers/347.pdf

• Randell, B. and Koutny, M. Failures: Their Definition, Modelling and Analysis
In Theoretical Aspects of Computing - ICTAC 2007. Macao, China, September
26-28, 2007 Jones, C.B., Liu, Z. and Woodcock, J. (eds.) LNCS, 4711, pp
260-274 Springer-Verlag, 2007
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/994.pdf

	04.randell_ 1
	04.randell_ 2
	04.randell_ 3
	04.randell_ 4
	04.randell_ 5
	04.randell_ 6
	04.randell_ 7
	04.randell_ 8
	04.randell_ 9
	04.randell_10
	04.randell_11
	04.randell_12
	04.randell_13
	04.randell_14
	04.randell_15
	04.randell_16
	04.randell_17
	04.randell_18
	04.randell_19
	04.randell_20
	04.randell_21
	04.randell_22
	04.randell_23
	04.randell_24
	04.randell_25
	04.randell_26
	04.randell_27
	04.randell_28
	04.randell_29
	04.randell_30
	04.randell_31
	04.randell_32
	04.randell_33
	04.randell_34
	04.randell_35
	04.randell_36
	04.randell_37
	04.randell_38
	04.randell_39
	04.randell_40
	04.randell_41
	04.randell_42

