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Automated Problem Diagnhosis

» Diagnosing problems
= Creates major headaches for administrators
= Worsens as scale and system complexity grows

» Goal: automate it and get proactive
= Failure detection and prediction
° Problem determination (or “fingerpointing”)

* How: Instrumentation plus statistical analysis
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Challenges in Problem Analysis

» Challengingin large-scale networked environment

= Can have multiple failure manifestations with a single root
cause

Can have multiple root causes for a single failure
manifestation

Problems and/or their manifestations can “travel” among
communicating components

A lot of information from multiple sources — what to use?
what to discard?

Automatically discover faulty node in a distributed system
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Exploration

= Current explorations
o Hadoop

* Open-source implementation of Map/Reduce (Yahoo!), popular
cloud-computing platform

s PVFS

= High-performance file system (Argonne National Labs)

o Lustre
* High-performance file system (Sun Microsystems)

= Studied
= Various types of problems
= Various kinds of instrumentation
= Various kinds of data-analysis techniques
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Why ?

* Hadoop is fault-tolerant
o Heartbeats: detect lost nodes

= Speculative re-execution: recover work due to lost/
laggard nodes

» Hadoop’s fault-tolerance can mask performance
problems

o Nodes alive but slow

= Target failures for our diagnosis
= Performance degradations (slow, hangs)
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BEFORE: Hadoop Web Console

Admin/user sifts through wealth of information
o Problem is aggravated in large clusters
= Multiple clicks to chase down a problem

No support for historical comparison
o Information displayed is a snapshot in time

Poor localization of correlated problems

= Progress indicators for all tasks are skewed by
correlated problem

No clear indicators of performance problems
= Are task slowdowns due to data skew or bugs? Unclear
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AFTER: Goals, Non-Goals

Diagnose faulty Master/Slave node to user/admin
Target production environment
= Don'tinstrument Hadoop or applications additionally

o Use Hadoop logs as-is (white-box strategy)
o Use OS-level metrics (black-box strateqgy)

Work for various workloads and under workload changes
Support online and offline diagnosis

Non-goals (for now)
= Tracing problem to offending line of code
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Target Hadoop Clusters

" 4000-processorYahoo!’'s M4g cluster
Production environment (managed by Yahoo!)
Offered to CMU as free cloud-computing resource

Diverse kinds of real workloads, problems in the wild
= Massive machine-learning, language/machine-translation

Permission to harvest all logs and OS data each week

» 100-node Amazon’s EC2 cluster
= Production environment (managed by Amazon)
= Commercial, pay-as-you-use cloud-computing resource
= Workloads under our control, problems injected by us
= gridmix, nutch, pig, sort, randwriter
= Can harvest logs and OS data of only our workloads
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Some Performance Problems Studied

I S

Resource CPU hog
contention
Packet-loss

Disk hog

Disk full
Application HADOOP-1036
ST HADOOP-1152
Source: HADOOP-2080
Hadoop JIRA

HADOOP-2051

HADOOP-1255

External process uses 70% of CPU

5% or 50% of incoming packets dropped
20GB file repeatedly written to

Disk full

Maps hang due to unhandled exception
Reduces fail while copying map output
Reduces fail due to incorrect checksum
Jobs hang due to unhandled exception

Infinite loop at Nameode

Studied Hadoop Issue Tracker (JIRA) from Jan-Dec 2007
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Hadoop: Instrumentation
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How About Those Metrics?

= White-box metrics (from Hadoop logs)
= Event-driven (based on Hadoop's activities)

o Durations
= Map-task durations, Reduce-task durations, ReduceCopy-durations, etc.

o System-wide dependencies between tasks and data blocks

o Heartbeat information: Heartbeat rates, Heartbeat-
timestamp skew between the Master and Slave nodes

» Black-box metrics (from OS /proc)
o 64 different time-driven metrics (sampled every second)

= Memory used, context-switch rate, User-CPU usage,
System-CPU usage, I/O wait time, run-queue size, number
of bytes transmitted, number of bytes received, pages in,
pages out, page faults
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Intuition for Diagnhosis

Slave nodes are doing approximately similar
things for a given job
Use some form of "peer comparison”

o But, peer-compare what?

Gather metrics and extract statistics
o Determine metrics of relevance
o For both black-box and white-box data

Peer-compare histograms, means, etc. to
determine “odd-man out”
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Log-Analysis Approach

ALSA: Analyzing Logs as StAte
Machines [USENIX WASL 2008]

Extract state-machine views of
execution from Hadoop logs

o Distributed control-flow view of logs
= Distributed data-flow view of logs

Diagnose failures based on statistics

of these extracted views

= Control-flow based diagnosis 2, j

o Control-flow + data-flow based diagnosis ‘“‘ | -.;%47
Perform analysis incrementally so Y b St
that we can support it online <
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Applying SALSA to Hadoop

Data-flow view: ,
transfer of data Control-flow

 to other nodes view: state

orders, durations
Map outputs to [t] Launch Reduce task

[t] Launch Map task Reduce tasks on :
: other nodes [t] Reduce is idling, waiting for Map

[t] Copy Map outputs|| outputs Reduce
: : Copy
[t] Map task done [t] Repeat until all Map outputs copied

[t] Start Reduce Copy

(of completed Map output) Reduce

Merge

Incoming Map outputs Copy

for this Reduce task [t] Finish Reduce Copy

[t] Reduce Merge Copy
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Distributed Control+Data Flow

= Distributed control-flow

o Causal flow of task execution across cluster nodes, i.e.,
Reduces waiting on Maps via Shuffles

= Distributed data-flow

= Data paths of Map outputs shuffled to Reduces
= HDFS data blocks read into and written out of jobs

» Job-centric data-flows: Fused Control+Data Flows
= Correlate paths of data and execution

= Create conjoined causal paths from data source before,
to data destination after, processing

= Helps to trace correlated performance problems
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Normalized counts (total 1.0)

Intuition: Peer Similarity
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Histograms (distributions) of durations of
Wi t eBl ock over a 30-second window

In fault-free conditions, metrics (e.g., WriteBlock
durations) are similar across nodes

Faulty node: Same metric is different on faulty node, as
compared to non-faulty nodes

Kullback-Leibler divergence (comparison of histograms)
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What Else Do We Do?

* Analyze black-box data with similar intuition

= Derive PDFs and use a clustering approach
* Distinct behavior profiles of metric correlations

= Compare them across nodes
= Technique called Ganesha [HotMetrics 2009]

* Analyze heartbeat traffic
= Compare heartbeat durations across nodes

= Compare heartbeat-timestamp skews across nodes

= Different metrics, different viewpoints, different
algorithms
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Putting the Elephant Together

BliMEy: Blind Men and the Elephant Framework
[CMU-CS-09-135 ] %
September 1
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Visualization

To uncover Hadoop’s execution in an
insightful way

To reveal outcome of diagnosis on sight

To allow developers/admins to get a handle
as the system scales

Value to programmers [HotCloud 2009]

= Allows them to spot issues that might assist them
in restructuring their code

= Allows them to spot faulty nodes
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Visualization (timeseries)

mdi_ec2_n10_s1_r3_20080306-gmix-dekhog_node1-5
JobTracker

ave heartbeat ae

&00 1000 1200
time (+1236335145343) &
Ta=kTracker

i
J:
:
8
%

&0 1000 1200
time {+12363058145943) &
DataNode

ave heartbeat me

DiskHog on slave

&00 1000 1200
time (+1236338145843) &

visible through lower
heartbeat rate for
that node

Priya Narasimhan © September
Carnegie Mellon University 09 21




Visualization(heatmaps)
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Visualizations (swimlanes)

Long-tailed map

Delaying overa Priya Narasimhan © September
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Current Developments

State-machine extraction +
visualization being
implemented for the
Hadoop Chukwa project

o Collaboration with Yahoo!

Web-based visualization
widgets for HICC (Hadoop
Infrastructure Care Center)

“"Swimlanes” currently
available in Chukwa trunk
(CHUKWA-279)




Briefly: Online Fingerpointing

= ASDF: Automated System for Diagnosing
Failures
= Can incorporate any number of different data sources

= Can use any number of analysis techniques to process
this data

= Can support online or offline analyses for Hadoop

= Currently plugging in our white-box & black-box
algorithms
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Hard Problems

Understanding the limits of black-box fingerpointing
= What failures are outside the reach of a black-box approach?
= What are the limits of “peer” comparison?

= What other kinds of black-box instrumentation exist?

Scalability

o Scaling to run across large systems and understanding “growing
pains”

Visualization

= Helping system administrators visualize problem diagnosis

Trade-offs

= More instrumentation and more frequent data can improve
accuracy of diagnosis, but at what performance cost?

Virtualized environments

= Do these environments help/hurt problem diagnosis?
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Summary

Automated problem diagnosis

Current targets: Hadoop, PVFS, Lustre
Initial set of failures

o Real-world bug databases, problems in the wild

Short-term: Transitioning techniques into Hadoop
code-base working with Yahoo!

Long-term

o Scalability, scalability, scalability, ....

o Expand fault study

o |mprove visualization, working with users

Additional details

o USENIX WASL 2008, USENIX SysML 2008, HotDep 2009
USENIX HotCloud 2009, USENIX HotMetrics 2009
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